【题目】如果三角形的两个内角∠α与∠β满足2α+β=90°,那么,我们将这样的三角形称为“准互余三角形”.在△ABC中,已知∠C=90°,BC=3,AC=4(如图所示),点D在AC边上,联结BD.如果△ABD为“准互余三角形”,那么线段AD的长为_____(写出一个答案即可).
【答案】或
【解析】
作DM⊥AB于M.设∠ABD=α,∠A=β.分两种情形:①当2α+β=90°时.②当α+2β=90°时,分别求解即可.
解:过点D作DM⊥AB于M.设∠ABD=α,∠A=β.
①当2α+β=90°时,∵α+β+∠DBC=90°,
∴∠DBC=∠DBA,
∵DM⊥AB,DC⊥BC,
∴DM=DC,
∵∠DMB=∠C=90°,DM=DC,BD=BD,
∴Rt△BDC≌Rt△BDM(HL),
∴BM=BC=3,
∵∠C=90°,BC=3,AC=4,
∴AB==5,
∴AM=5﹣3=2,设AD=x,则CD=DM=4﹣x,
在Rt△ADM中,则有x2=(4﹣x)2+22,
解得x=.
∴AD=.
②当α+2β=90°时,∵α+β+∠DBC=90°,
∴∠DBC=β=∠A,
∵∠C=∠C,
∴△CBD∽△CAB,
∴BC2=CDCA,
∴CD=,
∴AD=AC﹣CD=4﹣=.
故答案为:或.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC和△DEF均为等腰直角三角形,AB=2,DE=1,E、B、F、C在同一条直线上,开始时点B与点F重合,让△DEF沿直线BC向右移动,最后点C与点E重合,设两三角形重合面积为y,点F移动的距离为x,则y关于x的大致图象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一天,小战和同学们一起到操场测量学校旗杆高度,他们首先在斜坡底部C地测得旗杆顶部A的仰角为45°,然后上到斜坡顶部D点处再测得旗杆顶部A点仰角为37°(身高忽略不计).已知斜坡CD坡度i=1:2.4,坡长为2.6米,旗杆AB所在旗台高度EF为1.4米,旗台底部、台阶底部、操场在同一水平面上.则请问旗杆自身高度AB为( )米.
(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
A.10.2B.9.8C.11.2D.10.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红旗连锁超市准备购进甲、乙两种绿色袋装食品.甲、乙两种绿色袋装食品的进价和售价如表.已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.
甲 | 乙 | |
进价(元/袋) | ||
售价(元/袋) | 20 | 13 |
(1)求的值;
(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于4800元,且不超过4900元,问该超市有几种进货方案?
(3)在(2)的条件下,该超市如果对甲种袋裝食品每袋优惠元出售,乙种袋装食品价格不变.那么该超市要获得最大利润应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应市政府关于“垃圾不落地,市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的了解情况,对该校部分学生进行了问卷调查,并将调查结果分为四类(其中类表示“非常了解”,类表示“比较了解”,类表示“基本了解”,类表示“不太了解”).根据调查结果得到如下不完整的统计表和统计图.请解答下列问题:
了解程度 | 人数(人) | 所占百分比 |
, .
补全条形统计图;
若该校共有学生人,估计该校对垃圾分类知识“非常了解”的有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,菱形ABCD的对角线交于点O,AC=2BD,点P是AO上一个动点,过点P作AC的垂线交菱形的边于M,N两点.设AP=x,△OMN的面积为y, 表示y与x的函数关系的图象大致如图2所示,则菱形的周长为
A. 2 B. C. 4 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以AB为直径的半圆O交AC于点D,且点D为AC的中点,DE⊥BC于点E,AE交半圆O于点F,BF的延长线交DE于点G.
(1)求证:DE为半圆O的切线;
(2)若GE=1,BF=,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有边长为a的正方形卡片①,边长为b的正方形卡片②,两邻边长分别为a,b的矩形卡片③若干张.
(1)请用2张卡片①,1张卡片②,3张卡片③拼成一个矩形,在方框中画出这个矩形的草图;
(2)请结合拼图前后面积之间的关系写出一个等式;
(3)小明想用类似方法解释多项式乘法(a+3b)(2a+2b)的结果,那么需用卡片①______张,卡片②______张,卡片③______张.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com