精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD中,对角线ACBD相交于点OEFAC上的两点,当EF满足下列哪个条件时,四边形DEBF不一定是平行四边形(  )

A.ADE=CBFB.ABE=CDFC.DE=BFD.OE=OF

【答案】C

【解析】

根据平行四边形的性质,以及平行四边形的判定定理即可作出判断.

A、在平行四边形ABCD中,

AO=CODO=BOADBCAD=BC

∴∠DAE=BCF

若∠ADE=CBF

ADECBF中,

∴△ADE≌△CBF

AE=CF

OE=OF

∴四边形DEBF是平行四边形;

B、若∠ABE=CDF

ABECDF中,

∴△ABE≌△CDF

AE=CF

AO=CO

OE=OF

OD=OB

∴四边形DEBF是平行四边形;

C、若DEAC不垂直,则满足AC上一定有一点M使DM=DE,同理有一点N使BF=BN,则四边形DEBF不一定是平行四边形,则选项错误;

D、若OE=OF

OD=OB

∴四边形DEBF是平行四边形;

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,己知正方形ABCD的边长为4, P是对角线BD上一点,PE⊥BC于点E, PF⊥CD于点F,连接AP, EF.给出下列结论:①PD=EC:②四边形PECF的周长为8;③△APD一定是等腰三角形:④AP=EF⑤EF的最小值为⑥AP⊥EF.其中正确结论的序号为(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市有着丰富的土地资源,适宜种植玉米,某企业已收购玉米525吨,根据市场信息,将玉米直接销售,每吨可获利100元;如果对玉米进行粗加工,每天可加工8吨,每吨可获利1000元;如果对玉米进行精加工,每天可加工05吨,每吨可获利5000元.由于受条件限制,在同一天中只能采取一种加工方式,并且必须在30天内将这批玉米全部销售,为此,研究了两种方案.

1)方案一:将玉米全部粗加工后销售,则可获利 元;

2)方案二:30天时间都进行精加工,未来得及加工的玉米,在市场上直接销售,则可获利 元;

3)问是否存在第三种方案,将部分玉米精加工,其余玉米粗加工,并恰好在30天内完成?若存在,请求销售后所获利润:若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,过点DDE⊥AB于点E,点FCD上,CF=AE,连接BF,AF.

(1)求证:四边形BFDE是矩形;

(2)AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).

(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1

(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,O是对角线ACBD的交点,MBC边上的动点(点M不与BC重合),CNDMCNAB交于点N,连接OMONMN.下列四个结论:①△CNB≌△DMC;②△CON≌△DOM;③AN2CM2MN2;④若AB2,则SOMN的最小值是.其中正确结论的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.

调查结果统计表

组别

分组(单位:元)

人数

A

0≤x<30

4

B

30≤x<60

16

C

60≤x<90

a

D

90≤x<120

b

E

x≥120

2

请根据以上图表,解答下列问题:

(1)填空:这次被调查的同学共有__人,a+b=__,m=___

(2)求扇形统计图中扇形C的圆心角度数;

(3)该校共有学生1000人,请估计每月零花钱的数额x60≤x<120范围的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PB与⊙O相切于点B,过点BOP的垂线BA,垂足为C,交⊙O于点A,连结PAAOAO的延长线交⊙O于点E,与PB的延长线交于点D

1)求证:PA是⊙O的切线;

2)若tanBAD=,且OC=4,求BD的长.

查看答案和解析>>

同步练习册答案