精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,E是BC上的一点,连接AE,作BFAE,垂足为H,交CD于F,作CGAE,交BF于G.

求证:(1)CG=BH;

(2)FC2=BF·GF;

(3)

【答案】见解析

【解析】

证明 (1)BFAE,CGAE,CGBF.

在正方形ABCD中,ABH+CBG=90°,CBG+BCG=90°,BAH+ABH=90°,

∴∠BAH=CBG,ABH=BCG.

AB=BC,

∴△ABH≌△BCG,

CG=BH.

(2)∵∠BFC=CFG,BCF=CGF=90°,

∴△CFG∽△BFC,

FC2=BF·GF.

(3)∵∠BGC=BCF=90°,GBC=FBC,

∴△BCF∽△BGC,

,即BF2=BG·BF,

AB=BC,

AB2=BG·BF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为.___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有AB两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2A型设备比购买3B型设备少6万元.

A

B

价格(万元/台)

a

b

处理污水量(吨/月)

240

180

1)求ab的值;

2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;

3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FCADE

1)求证:AFE≌△CDF

2)若AB=4BC=8,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.

(2)如图②,将ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=∠2,要说明ABDACD,还需从下列条件中选一个,错误的选法是(

A. ADB=∠ADCB. B=∠CC. DBDCD. ABAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BCAC,过点C作直线CDAB于点D,点EAB上一点,直线CE交⊙O于点F,连接BF与直线CD延长线交于点G.求证:BC2BG·BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平面直角坐标系xOy中,函数yx0)的图象与一次函数ykxk的图象的交点为Am2).

1)求一次函数的解析式;

2)设一次函数ykxk的图象与y轴交于点B,若Px轴上一点,且满足△PAB的面积是6,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.

(1)画出ABC向上平移6个单位得到的A1B1C1

(2)以点C为位似中心,在网格中画出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比为2:1,并直接写出点A2的坐标.

查看答案和解析>>

同步练习册答案