精英家教网 > 初中数学 > 题目详情

作业宝已知,如图,点B,F,C,E在同一直线上,AC,DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,∠A=∠D,试说明:
(1)△ABC≌△DEF;  
(2)BF=CE.

证明:(1)∵AB⊥BE,DE⊥BE,
∴∠B=∠E=90°,
在△ABC和△DEF中,

∴△ABC≌△DEF(ASA);

(2)∵△ABC≌△DEF,
∴CB=EF,
∴CB-FC=EF-FC,
即EC=FB.
分析:(1)根据垂直可得∠B=∠E=90°,然后可根据ASA定理证明△ABC≌△DEF;
(2)根据△ABC≌△DEF可得CB=EF,然后再根据等式的性质两边同时减去FC可得BF=CE.
点评:此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知:如图,点O为?ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC的延长线于点E、F,求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C(-
2
5
4
5
)
,E为直径精英家教网OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.
(1)求直线AB的解析式;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.BF,CE相交于点O.
(1)求证:∠ACE=∠DBF;
(2)若点B是AC的中点,∠E=60°,AE=4,求△OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P是半径为5cm的⊙O外的一点,OP=13cm,PT切⊙O于T,过P点作⊙O的割线PAB,(PB>PA).设PA=x,PB=y,求y关于x的函数解析式,并确定自变量x的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淮阴区模拟)已知:如图,点E、A、C在同一条直线上,AB=CE,AC=CD,BC=ED.求证:AB∥CD.

查看答案和解析>>

同步练习册答案