【题目】如图,四边形ABCD中, BA=BC, DA=DC,我们把这种两组邻边分别相等的四边形叫做“筝形”, 其对角线AC、BD交于点M,请你猜想关于筝形的对角线的一条性质,并加以证明.
猜想:
证明:
科目:初中数学 来源: 题型:
【题目】一枚均匀的正方体骰子,六个面分别标有数字:1,2,3,4,5,6.如果用小刚抛掷正方体骰子朝上的数字x,小强抛掷正方体骰子朝上的数字y来确定点P(x,y),那么他们各抛掷一次所确定的点P落在已知直线y=﹣2x+7图象上的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知,A(0, 4),B (t,0)分别在y轴,x轴上,连接AB,以AB为直角边分别作等腰Rt△ABD和等腰Rt△ABC.直线BC交y轴于点E. 点G(-2,3)、H(-2,1)在第二象限内.
(1)当t =-3时,求点D的坐标.
(2)若点G、H位于直线AB的异侧,确定t的取值范围.
(3)①当t取何值时,△ABE与△ACE的面积相等.
②在①的条件下,在x轴上是否存在点P,使△PCB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,已知点A(-4,0)、B(0,3),对△AOB连续作旋转变换可以依次得到三角形(1)、(2)、(3)、(4)、…
请你仔细观察图形,并解决以下问题:
(1)第(2)个三角形的直角顶点坐标是 ;
(2)第(5)个三角形的直角顶点坐标是 ;
(3)第(2018)个三角形的直角顶点坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小李从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为35 m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2m,现己知购买这种铁皮每平方米需30元钱,问小李购回这张矩形铁皮共花了多少元钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线与抛物线交于不同的两点、 (点在点的左侧).
(1)直接写出的坐标 ; (用的代数式表示)
(2)设抛物线的顶点为,对称轴与直线的交点为,连结、,若S△NDC=3×S△MDC,求抛物线的解析式;
(3)如图②,在(2)的条件下,设该抛物线与轴交于、两点,点为直线下方抛物线上一动点,连接、,设直线交线段于点,△MPQ的面积为,△MAQ的面积为,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com