【题目】如图,过⊙O外一点P向⊙O作两条切线,切点分别为A,B,若⊙O半径为2,∠APB=60°,则图中阴影部分的面积为 .
【答案】4 ﹣ π
【解析】解:连接OA、OB,OP,如图,
∵PA,PB是⊙O的两条切线,
∴OA⊥AP,OB⊥PB,OP平分∠APB,
∴∠PAO=∠PBO=90°,∠APO= ×60°=30°,
∴∠AOB=180°﹣∠APB=180°﹣60°=120°,
在Rt△PAO中,∵OA=2,∠APO=30°,
∴AP= OA=2 ,
∴S△PAO= ×2×2 =2 ,
∴阴影部分的面积=S四边形AOBP﹣S扇形AOB
=2×2 ﹣ =4 ﹣ π.
所以答案是:4 ﹣ π.
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径,以及对扇形面积计算公式的理解,了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC的底边AB在x轴上,点B与原点O重合,已知点A(﹣2,0),AC= ,将△ABC沿x轴向右平移,当点C的对应点C1落在直线y=2x﹣4上时,则平移的距离是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(新知理解)
如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.
(1)若AC=3,求AB;
(2)若点D也是图①中线段AB的圆周率点(不同于点C),判断AC,BD的等量关系;
(解决问题)
如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.
(3)若点M、N是线段OC的圆周率点,求MN的长;
(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC边长为2,四边形DEFG是平行四边形,DG=2,DE=3,∠GDE=60°,BC和DE在同一条直线上,且点C与点D重合,现将△ABC沿D→E的方向以每秒1个单位的速度匀速运动,当点B与点E重合时停止,则在这个运动过程中,△ABC与四边形DEFG的重合部分的面积S与运动时间t之间的函数关系图象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管( )根.
A. 2 B. 4 C. 5 D. 无数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,A、B在数轴上对应的数分别用、表示,且.
(1)数轴上点A表示的数是 ,点B表示的数是
(2)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;动点Q从原点O出发,以1个单位长度/秒速度向B运动,点P、Q同时出发,点Q运动到B点时两点同时停止.设点Q运动时间为t秒.
①若P从A到B运动,则P点表示的数为 ,Q点表示的数为 .用含的式子表示)
②当t为何值时,点P与点Q之间的距离为2个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】基本模型:如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE~△BCF.
(1)模型拓展:如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE~△BCF;
(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4 ,E,F分别是AC,AB上的一点,若∠CFE=45°,若设AE=y,BF=x,求y与x的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com