精英家教网 > 初中数学 > 题目详情

【题目】从-112这三个数字中,随机抽取一个数记为a,那么,使关于x的一次函数y2xa的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为________

【答案】

【解析】a=1y=2x+a可化为y=2x1x轴交点为(0)y轴交点为(01)

三角形面积为××1=

a=1y=2x+a可化为y=2x+1x轴交点为(0)y轴交点为(01)

三角形的面积为××1=

a=2y=2x+a可化为y=2x+2x轴交点为(10)y轴交点为(02)

三角形的面积为×2×1=1(舍去)

a=1不等式组可化为,不等式组的解集为,无解;

a=1不等式组可化为解集为,解得x=1

使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为且使关于x的不等式组有解的概率为P=.

故答案为: .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.

(1)若点P到点A、点B的距离相等,求点P对应的数;

(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;

(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P6个单位长度/秒的速度同时从O点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在“筑梦少年正当时,不忘初心跟党走”知识竟赛中,七年级(2)班2人获一等奖,1人获二等奖,3人获三等奖,奖品价值41元;七年级(7)班1人获一等奖,3人获二等奖,3人获三等奖,奖品价值37元;七年级(13)班5人获二等奖,3人获三等奖,奖品价值_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴的单位长度为1,如果P,Q表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大(  )

A. P B. R C. Q D. T

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长和宽分别是a,b的长方形的四个角都剪去一个边长为x的正方形,折叠后,做成一无盖的盒子(单位:cm).

(1)用a,b,x表示纸片剩余部分的面积;

(2)用a,b,x表示盒子的体积;

(3)当a=10,b=8且剪去的每一个小正方形的面积等于4 cm2时,求剪去的每一个正方形的边长及所做成的盒子的体积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:甲、乙两车分别从相距300千米的 A,B两地同时出发相向而行,其中甲到 B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象

(1)求甲车离出发地的距离 y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;

(2)当它们行驶到与各自出发地的距离相等时,用了 小时,求乙车离出发地的距离 y(千米)与行驶时间 x(小时)之间的函数关系式;

(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:
①当x=﹣3或1时,y1=y2
②当﹣3<x<0或x>1时,y1>y2 , 即通过观察函数的图象,可以得到不等式ax+b>的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

下面是他的探究过程,请将(2)、(3)、(4)补充完整:
(1)将不等式按条件进行转化:
当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>
当x<0时,原不等式可以转化为x2+4x﹣1<
(2)构造函数,画出图象
设y3=x2+4x﹣1,y4= , 在同一坐标系中分别画出这两个函数的图象.
双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)
(3)确定两个函数图象公共点的横坐标
观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为;
(4)借助图象,写出解集
结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,双曲线y=与直线y=kx﹣2交于点A(3,1).
(1)求直线和双曲线的解析式;
(2)直线y=kx﹣2与x轴交于点B,点P是双曲线y=上一点,过点P作直线PC∥x轴,交y轴于点C,交直线y=kx﹣2于点D.若DC=2OB,写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,O为坐标原点.直线y=kx+b与抛物线y=mx2x+n同时经过A(0,3)、B(4,0).
(1)求m,n的值.
(2)点M是二次函数图象上一点,(点M在AB下方),过M作MN⊥x轴,与AB交于点N,与x轴交于点Q.求MN的最大值.
(3)在(2)的条件下,是否存在点N,使△AOB和△NOQ相似?若存在,求出N点坐标,不存在,说明理由.

查看答案和解析>>

同步练习册答案