【题目】在平面直角坐标系xOy中,点P的坐标为(a,b),点P的“关联点”P’的坐标定义如下:当时,P’点坐标为(b,a);当
时,P’点坐标为(-a,-b).
(1)写出A(5,3)的变换点坐标_____,B(1,6)的变换点坐标______,C(-2,4)的变换点坐标_____;
(2)如果直线l:上所有点的关联点组成一个新的图形,记作图形W,请画出图形W;
(3)在(2)的条件下,若直线y=kx-1(k≠0)与图形W有两个交点,请直接写出k的取值范围.
【答案】(1)A(3,5),B(-1,-6),C(2,-4);(2)见详解;(3)或
【解析】
(1)根据A、B、C三点的横、纵坐标间的关系即可找出与之对应的变换点坐标;
(2)根据直线DE的解析式,找出横纵坐标相等的点的坐标,根据变换点的定义,将直线DE上的点(2,2)左侧(不包括该点)的射线作关于原点对称的射线,再将直线DE的点(2,2)右侧(包括该点)作关于x=y对称的射线,由此即可得出图形W;
(3)根据W的做法找出图形W中两段射线的解析式,分别令y=kx1(k≠0)与这两段射线的交点的横坐标满足射线中x的取值范围,综合在一起即可得出结论.
解:(1)∵5>3,1<6,-2<4,
∴A(3,5),B(-1,-6),C(2,-4);
(2)当x=y时,则有,解得x=y=2,∴将直线DE上的点(2,2)右侧(包括该点)的射线作关于x=y对称的射线;再将直线DE上的点(2,2)左侧(不包括该点)作关于原点对称的射线,由此即可得出图形W;
(3)经过变换得到的两条射线方程为:
y=-2x+6 (x≤2)
(x>-2)
令-2x+6=kx-1(k≠0),则有且k≠0,k≠-2
解得:或k<-2
令(k≠0),则有
且k≠0,2k+1≠0
解得:或
综上可知: 若直线y=kx-1(k≠0)与图形W有两个交点,k的取值范围为:或k<-2
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于 D,
(1)直接写直线y=2x+2与坐标轴所围成的图形的面积
(2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=,过G作GF垂直BD,交BC于F,连接AP.
问:AP与PF有怎样的数量关系和位置关系?并说明理由;
(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄.
(1)设汽车行驶到公路AB上点P位置时,距离村庄M最近;行驶到点Q位置时,距离村庄N最近.请在图中的公路AB上分别画出点P,Q的位置(保留画图痕迹).
(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离M,N两村庄都越来越近?在哪一段路上距离村庄N越来越近,而离村庄M却越来越远?(分别用文字表述你的结论,不必证明).
(3)到在公路AB上是否存在这样一点H,使汽车行驶到该点时,与村庄M,N的距离相等?如果存在,请在图中的AB上画出这一点(保留画图痕迹,不必证明);如果不存在,请简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系,求:(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD、AE分别是△ABC的角平分线和高线.
(1) 若∠B=50°,∠C=60°,求∠DAE的度数;
(2)若∠C >∠B,猜想∠DAE与∠C-∠B之间的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.
(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2-5ax+4a与x轴相交于点A,B,且过点C(5,4).
(1)求a的值和该抛物线顶点P的坐标;
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交
轴、
轴于点C、D,且S△PBD=4,
.
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当时,一次函数的值大于反比例函数的值的
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com