【题目】如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.
(1)求证:CF=BF;
(2)若CD=5,AC=12,求⊙O的半径和CE的长.
【答案】(1)证明见解析;(2)CE=.
【解析】
(1)由AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ACB=90°,又由CE⊥AB,根据同角的余角相等可证得∠BCE =∠A,又由C是的中点,证得∠DBC =∠A,继而可证得CF﹦BF;(2)由C是的中点和CD=5可求得BC=5,利用勾股定理求得AB=13,即可求得⊙O的半径为6.5;在Rt△ACB中,利用三角形面积的两种表示方法即可求得EC的长.
(1)∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠A+∠ABC=90°.
又∵CE⊥AB,
∴∠CEB=90°.
∴∠BCE+∠ABC=90°.
∴∠BCE=∠A,
∵C是的中点,
∴=.
∴∠DBC=∠A,
∴∠DBC=∠BCE.
∴CF=BF;
(2)∵=,CD=5,
∴BC=CD=5,
∴AB==13,
∴⊙O的半径为6.5,
∵CEAB=ACBC,
∴CE===.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+bx+c与x轴交于点A(-3,0)、B(1,0),C为顶点,直线y=x+m经过点A,与y轴交于点D.
(1)求b、c的值;
(2)求∠DAO的度数和线段AD的长;
(3)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C′,若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是二次函数的部分的对应值:
x | … | -1 | 0 | 1 | 2 | 3 | … | ||||
y | … | m | -1 | -2 | -1 | 2 | … |
(1)求函数解析式;
(2)当时,y的取值范围是___________;
(3)当抛物线的顶点在直线的下方时,n的取值范围是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,C、D两点在半圆上,CE⊥AB于E,DF⊥AB于F,点P是AB上的一个动点,已知AB=10,CE=4,DF=3,则PC+PD的最小值是( )
A. 7 B. 7 C. 10 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.
已知: .
求证: .
证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.
(1)求证:AF=GC;
(2)若BD=6,AD=4,求⊙O的半径;
(3)在(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于D、E两点,连接ED
(1)求证:△CDE为等腰三角形;
(2)若CD=3,BC=4,求AD的长和⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知点A、B是反比例函数y=﹣上在第二象限内的分支上的两个点,点C(0,3),且△ABC满足AC=BC,∠ACB=90°,则线段AB的长为__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com