精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠ACB=90°,O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.

(1)求证:AF=GC;

(2)BD=6,AD=4,求⊙O的半径;

(3)(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.

【答案】(1)详见解析;(2)2;(3)4﹣π.

【解析】

(1)连接OD、OE、OF、OA,证明四边形OFCE为正方形,根据正方形的性质得到OF=CF,证明△GFC≌△AOF,根据全等三角形的性质证明结论;
(2)根据切线长定理得到BE=BD=6,AF=AD=4,CF=CE,根据勾股定理列出方程,解方程即可;
(3)根据正方形的面积公式和扇形面积公式计算.

(1)证明:连接OD、OE、OF、OA,

∵⊙O是ABC的内切圆,切点分别为D、E、F,

∴OE⊥BC,OF⊥AC,又∠ACB=90°,OE=OF,

四边形OFCE为正方形,

∴OF=CF,

∵AF=AD,OF=OD,

∴OA⊥DF,又∠AFD=∠GFC,

∴∠G=∠OAF,

GFC和AOF中,

∴△GFC≌△AOF(AAS),

∴AF=GC;

(2)解:由切线长定理得,BE=BD=6,AF=AD=4,CF=CE,

则AB=AD+BD=10,

由勾股定理得,AC2+BC2=AB2,即(4+CF)2+(6+CE)2=102

解得,CF=2,即O的半径为2;

(3)解:图中由弧EF与线段CF、CE围成的阴影部分面积=22 =4﹣π.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A点的右侧),与轴交于C点.

(1)A点的坐标是   ;B点坐标是   

(2)直线BC的解析式是:   

(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;

(4)若点Mx轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点是直线上一动点,点在点的下方,且轴,轴上有一点,当值最小时,点的坐标为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像与反比例函数的图像交于点,

(1)求反比例函数与一次函数的函数表达式

(2)请结合图像直接写出不等式的解集;

(3)若点Px轴上一点,ABP的面积为10,求点P的坐标,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点CDAB同侧,∠CAB=DBA,下列条件中不能判定ABD≌△BAC的是(  )

A. D=C B. BD=AC C. CAD=DBC D. AD=BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过AB两点分别作直线l的垂线,垂足分别为DE

1ACDCBE全等吗?说明你的理由.

2)若AD=2DE=3.5,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,都是等边三角形,交于点

1)求证:

2)下列结论中,正确的有________个.

;②;③平分;④平分

3)请选择(2)中任一正确结论进行证明.你选的序号是 _________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且ABCD,OB=6cm,OC=8cm.求:

(1)BOC的度数;

(2)BE+CG的长;

(3)O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,经过AC两点分别作AEBDCFBDEF为垂足.

1)求证:AED≌△CFB

2)求证:四边形AFCE是平行四边形

查看答案和解析>>

同步练习册答案