【题目】如图,△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.
(1)求证:AF=GC;
(2)若BD=6,AD=4,求⊙O的半径;
(3)在(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.
【答案】(1)详见解析;(2)2;(3)4﹣π.
【解析】
(1)连接OD、OE、OF、OA,证明四边形OFCE为正方形,根据正方形的性质得到OF=CF,证明△GFC≌△AOF,根据全等三角形的性质证明结论;
(2)根据切线长定理得到BE=BD=6,AF=AD=4,CF=CE,根据勾股定理列出方程,解方程即可;
(3)根据正方形的面积公式和扇形面积公式计算.
(1)证明:连接OD、OE、OF、OA,
∵⊙O是△ABC的内切圆,切点分别为D、E、F,
∴OE⊥BC,OF⊥AC,又∠ACB=90°,OE=OF,
∴四边形OFCE为正方形,
∴OF=CF,
∵AF=AD,OF=OD,
∴OA⊥DF,又∠AFD=∠GFC,
∴∠G=∠OAF,
在△GFC和△AOF中,
,
∴△GFC≌△AOF(AAS),
∴AF=GC;
(2)解:由切线长定理得,BE=BD=6,AF=AD=4,CF=CE,
则AB=AD+BD=10,
由勾股定理得,AC2+BC2=AB2,即(4+CF)2+(6+CE)2=102,
解得,CF=2,即⊙O的半径为2;
(3)解:图中由弧EF与线段CF、CE围成的阴影部分面积=22﹣ =4﹣π.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A点的右侧),与轴交于C点.
(1)A点的坐标是 ;B点坐标是 ;
(2)直线BC的解析式是: ;
(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;
(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与反比例函数的图像交于点,,
(1)求反比例函数与一次函数的函数表达式
(2)请结合图像直接写出不等式的解集;
(3)若点P为x轴上一点,△ABP的面积为10,求点P的坐标,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C,D在AB同侧,∠CAB=∠DBA,下列条件中不能判定△ABD≌△BAC的是( )
A. ∠D=∠C B. BD=AC C. ∠CAD=∠DBC D. AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A、B两点分别作直线l的垂线,垂足分别为D、E.
(1)△ACD与△CBE全等吗?说明你的理由.
(2)若AD=2,DE=3.5,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,和都是等边三角形,和交于点.
(1)求证:;
(2)下列结论中,正确的有________个.
①;②;③平分;④平分.
(3)请选择(2)中任一正确结论进行证明.你选的序号是 _________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.
(1)求证:△AED≌△CFB;
(2)求证:四边形AFCE是平行四边形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com