【题目】如图,一次函数的图像与反比例函数的图像交于点,,
(1)求反比例函数与一次函数的函数表达式
(2)请结合图像直接写出不等式的解集;
(3)若点P为x轴上一点,△ABP的面积为10,求点P的坐标,
【答案】(1);;(2)或;(3)点P的坐标为(3,0)或(-5,0).
【解析】
(1)根据反比例函数的图象经过,利用待定系数法即可求出反比例函数的解析式;进而求得的坐标,根据、点坐标,进而利用待定系数法求出一次函数解析式;
(2)根据、的坐标,结合图象即可求得;
(3)根据三角形面积求出的长,根据的坐标即可得出的坐标.
解:(1)反比例函数的图象经过,
.
反比例函数的解析式为.
在上,所以.
的坐标是.
把、代入.得:,
解得,
一次函数的解析式为.
(2)由图象可知:不等式的解集是或;
(3)设直线与轴的交点为,
把代入得:,
,
的坐标是,
为轴上一点,且的面积为10,,,
,
,
当在负半轴上时,的坐标是;
当在正半轴上时,的坐标是,
即的坐标是或.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的结论有( )
A. ①③ B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的三个顶点都在格点上,点A的坐标为,点B的坐标为,点C的坐标为,请解答下列问题:
画出关于y轴对称的,使点与A对应,点与B对应;
画出绕原点O顺时针旋转后得到的,使点与A对应,点与B对应;
若和关于某直线对称,请直接写出该直线的解析式______;
直接写出外接圆圆心的坐标______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).小华的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE 、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,求所有满足条件的k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与直线交于点与轴交于点,点在轴上,过点作轴于点,交于点,交于.
(1)求直线的解析式和点坐标.
(2)求①的面积与的关系式.并求出当的面积为时,点坐标.在轴上确定点,使得的面积等于面积,直接写出点的坐标;
②若直线将分成面积相等的两部分,求的值.
③若是直线上一点,点是直线上一点,使得当沿着折叠后与重合,请直接写出点和点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,弦CF⊥AB于点E,CF=4,过点C作⊙O的切线交AB的延长线于点D,∠D=30°,则OA的长为( )
A. 2 B. 4 C. 4 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.
(1)求证:AF=GC;
(2)若BD=6,AD=4,求⊙O的半径;
(3)在(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连接AD、BC,点M、N、P分别为OA、OD、BC的中点.
①若A、O、C三点在同一直线上,且∠ABO=2α,则 =_____(用含有α的式子表示);
②固定△AOB,将△COD绕点O旋转,PM最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AC是一根垂直于地面的木杆,B是木杆上的一点,且AB=2米,D是地面上一点,AD=3米.在B处有甲、乙两只猴子,D处有一堆食物.甲猴由B往下爬到A处再从地面直奔D处,乙猴则向上爬到木杆顶C处腾空直扑到D处,如果两猴所经过的距离相等,则木杆的长为( )
A. m B. 2 m C. 3 m D. 5 m
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com