精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为O的直径,弦CFAB于点E,CF=4,过点C作O的切线交AB的延长线于点D,D=30°,则OA的长为(  )

A. 2 B. 4 C. 4 D. 4

【答案】B

【解析】

由∠D=30°,利用切线的性质可得∠COB的度数,利用等边三角形的判定和性质及切线的性质可得∠BCD,易得BC=BD,由垂径定理得CE的长,在直角三角形COE中,利用锐角三角函数易得OC的长,得BD的长.

解:连结CO,BC,

∵CD切⊙OC,

∴∠OCD=90°,

又∵∠D=30°,

∴∠COB=60°,

∴△OBC是等边三角形,即BC=OC=OB,

∴∠BCD=90°﹣∠OCB=30°,

∴BC=DB,

又∵直径AB⊥弦CF,

∴直径AB平分弦CF,即CE=

Rt△OCE中,sin∠COE==

∴OC==4,

∴OA=OC=4.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.

1)求证:ADC≌△CEB

2)已知DE35cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC为等边三角形,P是直线AC上一点,ADBPD,以AD为边作等边ADE(D,E在直线AC异侧).

(1)如图1,若点P在边AC上,连CD,且∠BDC=150°,则= ;(直接写结果)

(2)如图2,若点PAC延长线上,DEBCF求证:BF=CF;

(3)在图2中,若∠PBC=15°,AB=,请直接写出CP的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,的中点,延长线上的一点,

求证

阅读下列材料:

如图,把沿直线平行移动线段的长度,可以变到的位置;

如图,以为轴把翻折,可以变到的位置;

如图,以点为中心把旋转,可以变到的位置.

像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.

回答下列问题:

在图中,可以通过平行移动、翻折、旋转中的哪一种方法使变到的位置,

答:________.

指出图中,线段之间的关系.

答:________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像与反比例函数的图像交于点,

(1)求反比例函数与一次函数的函数表达式

(2)请结合图像直接写出不等式的解集;

(3)若点Px轴上一点,ABP的面积为10,求点P的坐标,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A(﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.

(1)请在图中画出平面直角坐标系,并标出景点C的位置;

(2)平面直角坐标系的坐标原点为点O,ACO是直角三角形吗?请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过AB两点分别作直线l的垂线,垂足分别为DE

1ACDCBE全等吗?说明你的理由.

2)若AD=2DE=3.5,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠B= 60°.

1)如图①.若点EF分别在边ABAD上,且BE=AF,求证:CEF是等边三角形.

2)小明发现,当点EF分别在边ABAD上,且∠CEF=60°时,CEF也是等边三角形,

并通过画图验证了猜想;小丽通过探索,认为应该以CE= EF为突破口,构造两个全等三角形:小倩受到小丽的启发,尝试在BC上截取BM =BE,并连接ME,如图②,很快就证明了CEF是等边三角形.请你根据小倩的方法,写出完整的证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,直径CD弦AB于E,AMBC于M,交CD于N,连接AD.

(1)求证:AD=AN;

(2)若AB=8,ON=1,求⊙O的半径.

查看答案和解析>>

同步练习册答案