【题目】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利80元.为了扩大销售、尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天就能多售出2件.请解答下列问题:
(1)当每件衬衫降价30元时,求商场每天销售该衬衫所获得的总利润.
(2)当该衬衫每件降价多少元时,商场销售该衬衫每天所获得的利润为1680元.
【答案】(1)当每件衬衫降价30元时,商场每天销售该衬衫所获得的总利润为1600元;(2)当该衬衫每件降价20元时,商场销售该衬衫每天所获得的利润为1680元
【解析】
(1)根据“总利润=单件的利润×件数”即可求出结论;
(2)设该衬衫每件降价x元,根据“总利润=单件的利润×件数”,列出一元二次方程即可求出结论.
解:(1)由题意可得总利润=(80-30)×(20+×2)=1600(元)
答:当每件衬衫降价30元时,商场每天销售该衬衫所获得的总利润为1600元.
(2)设该衬衫每件降价x元
由题意可知(80-x)×(20+×2)=1680
解得:,
∵尽快减少库存,
∴,
答:当该衬衫每件降价20元时,商场销售该衬衫每天所获得的利润为1680元.
科目:初中数学 来源: 题型:
【题目】如图所示,正比例函数y=kx与反比例函数的图象交于点A(﹣3,2).
(1)试确定上述正比例函数与反比例函数的解析式;
(2)根据图象回答,在第二象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)P(m,n)是反比例函数图象上的一动点,其中﹣3<m<0,过点P作直线PB∥x轴,交y轴于点B,过点A作直线AD∥y轴,交x轴于点D,交直线PB于点C.当四边形OACP的面积为6时,请判断线段BP与CP的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).
(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;
(2)若点A的坐标为(5,0),求直线AB的解析式;
(3)在(2)的条件下,求四边形BODC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用5天;
(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.
据上述条件解决下列问题:
①规定期限是多少天?写出解答过程;
②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,对角线AC,BD相交于O点,点P是线段AD上一动点(不与点D重合),PO的延长线交BC于Q点.
(1)求证:四边形PBQD为平行四边形.
(2)若AB=3cm,AD=4cm,P从点A出发.以1cm/s的速度向点D匀速运动.设点P的运动时间为ts,问:四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,.点O是的中点,过点O的直线与从重合的位置开始,绕点O作逆时针旋转,交于点D,过点C作交直线于点E,设直线的旋转角为.
(1)当四边形是等腰梯形时,则=_______,此时________;
(2)当四边形是直角梯形时,则=_________,此时_________;
(3)当为几度时,判断四边形是否为菱形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E在边BC上(点E不与点B重合),连接AE,过点B作BF⊥AE于点F,交CD于点G.
(1)求证:△ABF∽△BGC;
(2)若AB=2,G是CD的中点,求AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com