【题目】如图,面积为8cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,则图中四边形ACED的面积是cm2 .
【答案】24
【解析】解:设BC=x,△ABC边BC上的高为h, ∵△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,
∴AD∥BE,BE=AD=2BC=2x,
∴CE=BE﹣BC=BC=x,
∴四边形ACED的面积= (AD+CE)h= (2x+x)h= xh,
∵△ABC面积= xh=8cm2 ,
∴四边形ACED的面积=3×8=24cm2 .
所以答案是:24.
【考点精析】本题主要考查了平移的性质的相关知识点,需要掌握①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化;②经过平移后,对应点所连的线段平行(或在同一直线上)且相等才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+bx+c的图象与x轴的正半轴相交于点A(2,0)和点B、与y轴相交于点C,它的顶点为M、对称轴与x轴相交于点N.
(1)用b的代数式表示顶点M的坐标;
(2)当tan∠MAN=2时,求此二次函数的解析式及∠ACB的正切值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上表示整数的点称为整点.某数轴上的单位长度是1cm,若在这个数轴上随意画出一条长2014cm的线段AB,则线段AB盖住的整点个数是( )
A.2015个或2016个
B.2014个或2015个
C.2013个或2014个
D.2012个或2013个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:
①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.
其中正确的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有足够多的边长为a的小正方形(A类),长为b宽为a的长方形(B类)以及边长为b的大正方形(C类) ,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2
(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(2a+b)(a+2b),在下面虚框中画出图形,并根据图形回答(2a+b)(a+2b)= .
(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2 . ①你画的图中需C类卡片张.
②可将多项式a2+5ab+6b2分解因式为
(3)如图③,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个相同矩形的两边长(x>y),观察图案并判断,将正确关系式的序号填写在横线上(填写序号) ①xy= ②x+y=m ③x2﹣y2=mn ④x2+y2= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点E处,若∠EBC=20°,则∠EBD的度数为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】化简求值
(1)若a2﹣4a+b2﹣10b+29=0,求a2b+ab2的值
(2)先化简,再求值:(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2 , 其中 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com