精英家教网 > 初中数学 > 题目详情
7.火车车厢中,如果8号车厢23号座位记为(8,23),那么9号车厢18号座位记为(9,18).

分析 根据有序数对(a,b),a表示车厢,b表示座位,可得答案.

解答 解:∵8号车厢23号座位记为(8,23),
∴9号车厢18号座位记为:(9,18),
故答案为:(9,18).

点评 本题考查了坐标确定位置,利用有序数对(a,b),a表示车厢,b表示座位是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.若y=(m-1)x|m|+2,当m=-1 时,y是x的一次函数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,射线QN与边长为8的等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN.动点P从点Q出发,沿射线QN以每秒2cm的速度向右移动,以点P为圆心,2$\sqrt{3}$cm为半径的圆也随之移动.若AM=MB=4cm,QM=8cm,且经过t秒,当⊙P与△ABC的边相切时,则t可取的一切值为t=2或3≤t≤7或t=8(单位:秒).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知∠AOB=90°,射线OC绕点O从OA位置开始,以每秒4°的速度顺时针方向旋转;同时,射线OD绕点O从OB位置开始,以每秒1°的速度逆时针方向旋转.当OC与OA成180°时,OC与OD同时停止旋转.
(1)当OC旋转10秒时,∠COD=40°.
(2)当OC与OD的夹角是30°时,求旋转的时间.
(3)当OB平分∠COD时,求旋转的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)已知:如图1,点O为直线AB上任意一点,射线OC为任意一条射线.OD、OE分别平分∠AOC和∠BOC,则∠DOE=90°;
(2)已知:如图2,点O为直线AB上任意一点,射线OC为任意一条射线,其中∠COD=$\frac{1}{3}$∠AOC,∠COE=$\frac{1}{3}$∠BOC,求∠DOE得度数;
(3)如图3,点O为直线AB上任意一点,OD是∠AOC的平分线,OE在∠BOC内,∠COE=$\frac{1}{3}$∠BOC,∠DOE=72°,求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.等边三角形的边长为2,则它的周长为6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列各式计算结果正确是(  )
A.-3+3=-6B.-6÷2×3=-1C.-9÷(-1$\frac{1}{2}$)2=-4D.-4+(-2)×$\frac{1}{2}$=-3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.某蜡烛原长20cm,点燃后每小时燃烧5cm,写出蜡烛的剩余长度y(cm)与点燃时间x(h)之间的函数关系式y=20-5x(0≤x≤4).

查看答案和解析>>

同步练习册答案