精英家教网 > 初中数学 > 题目详情

【题目】已知△ABC是等腰直角三角形,∠BAC=90°,CD= BC,DE⊥CE,DE=CE,连接AE,点M是AE的中点.

(1)如图1,若点D在BC边上,连接CM,当AB=4时,求CM的长;
(2)如图2,若点D在△ABC的内部,连接BD,点N是BD中点,连接MN,NE,求证:MN⊥AE;
(3)如图3,将图2中的△CDE绕点C逆时针旋转,使∠BCD=30°,连接BD,点N是BD中点,连接MN,探索 的值并直接写出结果.

【答案】
(1)

解:如图1中,

连接AD.

∵AB=AC=4,∠BAC=90°,

∴∠B=∠ACD=45°,BC= =4

∵DC= BC=2

∵ED=EC,∠DEC=90°,

∴DE=EC=2,∠DCE=∠EDC=45°,

∴∠ACE=90°,

在RT△ACE中,AE= = =2

∵AM=ME,

∴CM= AE=


(2)

证明:如图2中,

延长DM到G使得MG=MD,连接AG、BG,延长ED交AB于F.

在△AMG和△EMD中,

∴△AMG≌△EMD,

∴AG=DE=EC,

∠MAG=∠MED,

∴EF∥AG,

∴∠BAG=∠BFE=180°﹣∠FBC﹣(90°﹣∠ECB)=45°+∠BCE=∠ACE,

在△ABG和△CAE中,

∴△ABG≌△CAE,

∴∠ABG=∠CAE,

∵∠CAE+∠BAE=90°,

∴∠ABG+∠BAE=90°,

∴∠AOB=90°,

∴BG⊥AE,

∵DN=NB,DM=MG,

∴MN∥BG,

∴MN⊥AE


(3)

解:如图3中,

延长DM到G使得MG=MD,连接AG、BG,延长AG、EC交于点F.

∵△AMG≌△EMD,

∴AG=DE=EC,∠GAM=∠DEM,

∴AG∥DE,

∴∠F=∠DEC=90°,

∵∠FAC+∠ACF=90°,∠BCD+∠ACF=90°,∠BCD=30°,

∴∠BAG=∠ACE=120°,

在△ABG和△CAE中,

∴△ABG≌△CAE,

∴BG=AE,

∵BN=ND,DM=MG,

∵BG=AE=2MN,

∴∠FAC=∠BCD=30°,设BC=2a,则CD=a,DE=EC= a,AC= a,CF= a,AF= a,EF= a,

∴AE= = a,

∴MN= a,

= =


【解析】(1)先证明△ACE是直角三角形,根据CM= AE,求出AE即可解决问题.(2)如图2中,延长DM到G使得MG=MD,连接AG、BG,延长ED交AB于F,先证明△AMG≌△EMD,推出EF∥AG,再证明△ABG≌△CAE,得∠ABG=∠CAE,由此即可解决问题.(3)如图3中,延长DM到G使得MG=MD,连接AG、BG,延长AG、EC交于点F,先证明△ABG≌△CAE,得到BG=AE,设BC=2a,在RT△AEF中求出AE,根据中位线定理MN= BG= AE,由此即可解决问题.本题考查相似形综合题、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是添加辅助线,构造全等三角形,学会添加辅助线的方法,属于中考压轴题.
【考点精析】掌握勾股定理的概念和相似三角形的判定与性质是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)如果AB=4,AE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某养殖场计划购买甲、乙两种鱼苗共700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元,相关资料表明:甲、乙两种鱼苗的成活率分别为85%和90%
(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?
(2)若要使这批鱼苗的总成活率不低于88%,则甲种鱼苗至多购买多少尾?
(3)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是(  )

A.43
B.45
C.51
D.53

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:

参加本次调查有名学生,根据调查数据分析,全校约有名学生参加了音乐社团;请你补全条形统计图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE= .则四边形ABFE′的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线y=﹣ x2+ x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.

(1)判断△ABC的形状,并说明理由;
(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;
(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1 , C1 , 且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.

(1)当E为BC中点时,求证:△BCF≌△DEC;
(2)当BE=2EC时,求 的值;
(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是 ,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.

(1)画出将△ABC向右平移2个单位得到△A1B1C1
(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2
(3)求△A1B1C1与△A2B2C2重合部分的面积.

查看答案和解析>>

同步练习册答案