【题目】如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.
(1)画出将△ABC向右平移2个单位得到△A1B1C1;
(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;
(3)求△A1B1C1与△A2B2C2重合部分的面积.
【答案】
(1)
如图,△A1B1C1为所作
(2)
如图,△A2B2C2为所作
(3)
解:B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,如图,
∵B2(0,1),C2(2,3),B1(1,0),A1(2,5),A2(5,0),
∴直线A1B1为y=5x﹣5,
直线B2C2为y=x+1,
直线A2B2为y=﹣ x+1,
由 解得 ,∴点E( , ),
由 解得 ,∴点F( , ).
∴S△BEF= × ﹣ ﹣ ﹣ = .
∴△A1B1C1与△A2B2C2重合部分的面积为
【解析】(1)将△ABC向右平移2个单位即可得到△A1B1C1 . (2)将△ABC绕点O顺时针方向旋转90°即可得到的△A2B2C2 . (3)B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,如图,求出直线A1B1 , B2C2 , A2B2 , 列出方程组求出点E、F坐标即可解决问题.本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
科目:初中数学 来源: 题型:
【题目】已知△ABC是等腰直角三角形,∠BAC=90°,CD= BC,DE⊥CE,DE=CE,连接AE,点M是AE的中点.
(1)如图1,若点D在BC边上,连接CM,当AB=4时,求CM的长;
(2)如图2,若点D在△ABC的内部,连接BD,点N是BD中点,连接MN,NE,求证:MN⊥AE;
(3)如图3,将图2中的△CDE绕点C逆时针旋转,使∠BCD=30°,连接BD,点N是BD中点,连接MN,探索 的值并直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:
①c>0;
②若点B(﹣ ,y1)、C(﹣ ,y2)为函数图象上的两点,则y1<y2;
③2a﹣b=0;
④ <0,
其中,正确结论的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于( )
A.1:
B.1:
C.1:2
D.2:3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1: .
(1)求新坡面的坡角a;
(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.
(1)求∠CDE的度数;
(2)求证:DF是⊙O的切线;
(3)若AC=2 DE,求tan∠ABD的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com