精英家教网 > 初中数学 > 题目详情

【题目】解不等式组: ,并在数轴上表示它的解集.

【答案】解: ,由①得,x>﹣1,由②得,x≤1,

故不等式组的解集为;﹣1<x≤1.

在数轴上表示为:


【解析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【考点精析】掌握不等式的解集在数轴上的表示和一元一次不等式组的解法是解答本题的根本,需要知道不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈;解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 ).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】①如图1:A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点的位置(保留作图痕迹).
②如图2:某地有两个工厂M、N和两条相交叉的公路a,b现计划修建一座物资仓库,希望仓库到两个工厂的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.
(1)求∠AEC的度数;
(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1 , CE平分∠ACD1 , A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.
(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题正确的是( .

A.等弧对等弦;B.在同圆中,相等的弦所对的圆周角相等;

C.平分弦的直径垂直于弦;D.经过切点的直线是圆的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度数.
请将以下解答补充完整,
解:因为∠DAB+∠D=180°
所以DC∥AB(
所以∠DCE=∠B(
又因为∠B=95°,
所以∠DCE=°;
因为AC平分∠DAB,∠CAD=25°,根据角平分线定义,
所以∠CAB==°,
因为DC∥AB
所以∠DCA=∠CAB,(
所以∠DCA=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:
(1)这次被调查的学生共有人.
(2)请将统计图2补充完整.
(3)统计图1中B项目对应的扇形的圆心角是度.
(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列两个图形一定相似的是(

A.矩形B.有一个内角为100°的等腰三角形

C.直角三角形D.菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R .对于一个点与等边三角形,给出如下定义:满足rdR的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C(,﹣1).

(1)已知点D(2,2),E,1),F,﹣1).在DEF中,是等边△ABC的中心关联点的是

(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.

①若线段AM上存在等边△ABC的中心关联点Pmn),求m的取值范围;

②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b总存在等边△ABC的中心关联点;(直接写出答案,不需过程)

(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别延长ABCD的边CD,AB到E,F,使DE=BF,连接EF,分别交AD,BC于G,H,连结CG,AH.

求证:CG∥AH.

查看答案和解析>>

同步练习册答案