精英家教网 > 初中数学 > 题目详情

【题目】已知点P为抛物线y=x2+2x﹣3在第一象限内的一个动点,且P关于原点的对称点P′恰好也落在该抛物线上,则点P′的坐标为(  )

A. (﹣1,﹣1) B. (﹣2,﹣ C. (﹣,﹣2﹣1) D. (﹣,﹣2

【答案】D

【解析】分析:

设点P的坐标为(x,y),则点P′的坐标为(-x,-y),把两个点的坐标代入y=x2+2x﹣3中列出关于x、y的方程组,解方程组结合点P在第一象限即可求得点P的坐标,由此即可得到点P′的坐标了.

详解

P点的坐标为(x,y),

∵点P′与点P关于原点对称,

∴点P′的坐标为(﹣x,﹣y),

把点P(x,y)和点P′(﹣x,﹣y)代入y=x2+2x﹣3得:

,解得:

∵点P在第一象限,

∴点P的坐标为

∴点P′的坐标为.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点D是边BC的中点,点E在ABC内,AE平分BAC,CEAE,点F在边AB上,EFBC

(1)求证:四边形BDEF是平行四边形;

(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AB=8,点P在边CD上,tanPBC=,点Q是在射线BP上的一个动点,过点QAB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.

1)如图1,当点R与点D重合时,求PQ的长;

2)如图2,试探索: 的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;

3)如图3,若点Q在线段BP上,设PQ=xRM=y,求y关于x的函数关系式,并写出它的定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是矩形ABCD的边BC的中点,连接DEAC于点F

如图,求证:

如图,作G,试探究:当ABAD满足什么关系时,使得成立?并证明你的结论;

如图,以DE为斜边在矩形ABCD内部作等腰,交对角线BDN,连接AM,若,请直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过两点,与x轴交于另一点B

求此抛物线的解析式;

已知点在第四象限的抛物线上,求点D关于直线BC对称的点的坐标.

的条件下,连接BD,问在x轴上是否存在点P,使?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下列解题过程,然后解答问题(1)(2)

解方程:|x+3|=2

x+30时,原方程可化为:x+3=2,解得x=1

x+3<0时,原方程可化为:x+3=2,解得x=5

所以原方程的解是x=1x=5

(1)解方程:|3x1|5=0

(2)探究:当b为何值时,方程|x2|=b+1①无解;②只有一个解;③有两个解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.

(1)求每千克A级别茶叶和B级别茶叶的销售利润;

(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q()与行驶时间t()之间的函数关系如图,回答下列问题(1)机动车行驶________小时后加油,中途加油_______升;(2)求加油前油箱剩余油量Q与行驶时间t的函数关系,并直接写出自变量t的取值范围;(3)如果加油站距目的地还有230千米,车速为40千米/,要到达目的地,油箱中的油是否够用?请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.

(1)求证:PE是⊙O的切线;

(2)求证:ED平分∠BEP;

(3)若⊙O的半径为5,CF=2EF,求PD的长.

查看答案和解析>>

同步练习册答案