分析 首先过A作AF⊥BC,垂足为F,过点D作DH⊥AF,垂足为H.进而得出AF的长,再利用相似三角形的判定与性质得出AH的长即可得出答案.
解答
解:过A作AF⊥BC,垂足为F,过点D作DH⊥AF,垂足为H.
∵AF⊥BC,垂足为F,
∴BF=FC=$\frac{1}{2}$BC=40cm.
根据勾股定理,得AF=$\sqrt{A{B}^{2}-B{F}^{2}}$=$\sqrt{12{0}^{2}-4{0}^{2}}$=80$\sqrt{2}$(cm),
∵∠DHA=∠DAC=∠AFC=90°,
∴∠DAH+∠FAC=90°,∠C+∠FAC=90°,
∴∠DAH=∠C,
∴△DAH∽△ACF,
∴$\frac{AH}{FC}$=$\frac{AD}{AC}$,
∴$\frac{AH}{40}$=$\frac{30}{120}$,
∴AH=10cm,
∴HF=(10+80$\sqrt{2}$)cm.
答:D到地面的高度为(10+80$\sqrt{2}$)cm.
点评 此题主要考查了相似三角形的应用以及勾股定理,根据题意得出△DAH∽△ACF是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 912.17×107 | B. | 912.17×108 | C. | 9.1217×1010 | D. | 9.1217×109 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com