【题目】如图,在△ABC中,∠B=40°,∠C=110°.按要求完成下列各题.
(1)画出△ABC的高AD;
(2)画出△ABC的角平分线AE;
(3)根据你所画的图形求∠DAE的度数.
【答案】(1)详见解析;(2)详见解析;(3)35°.
【解析】
(1)过A点作BC延长线的垂线即可得到高AD;(2)根据角平分线的尺规作图即可作图;(3)先根据三角形的内角和求出∠CAB,再求出∠EAB,再根据三角形的外角定理求出∠AED,最后根据直角三角形求出∠DAE的度数.
(1)如图,AD即为所求作的高;
(2)如图,AE即为所求作的角平分线;
(3)在△ABC中,∵∠B=40°,∠C=110°,
∴∠CAB=180°-40°-110°=30°,
∵AE平分∠CAB,
∴∠EAB=∠CAB=15°,
∵∠AED是△ABE的外角,
∴∠AED=∠B+∠EAB=55°,
∵AD⊥BC,
∴∠ADB=90°,
∴在Rt△ADE中,∠DAE=90°-∠AED=90°-55°=35°.
科目:初中数学 来源: 题型:
【题目】△ABC与△A′B′C′在平面直角坐标系中的位置如图
(1)分别写出下列各点的坐标:A′______;B′______;C′______
(2)若点P(m,n)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为______.
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.
(1)该水果店两次分别购买了多少元的水果?
(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点M是BE的中点,连接CM、DM.
(1)当点D在AB上,点E在AC上时(如图一),求证:DM=CM,DM⊥CM;
(2)当点D在CA延长线上时(如图二)(1)中结论仍然成立,请补全图形(不用证明);
(3)当ED∥AB时(如图三),上述结论仍然成立,请加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD的面积为300cm2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm2的圆(π取3),请通过计算说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两个工程队共同修建一条公路,从两端同时开始,到工程结束时,甲工程 队共施工了天,乙队在中途接到紧急任务停止施工一段时间,回来后按照以前的施工 速度继续施工至结束,设甲、乙两工程队各自施工的长度分別为(米),(米),甲 队施工的时间为(天),,与之间的函数图象如图所示.
(1)这条公路的总长度是______米;
(2)求乙队在恢复施工后,与之间的函数表 达式;
(3)求在修建该条公路的过程中,甲、乙两队共同修建完米长时甲队施工的天数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.
(1)CD与EF平行吗?并说明理由;
(2)若∠A=72°,求∠FEC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b与⊙O相交,则b的取值范围是( )
A.0≤b<2
B.﹣2
C.﹣2 2
D.﹣2 <b<2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com