精英家教网 > 初中数学 > 题目详情
6.出租车司机小王某天下午营运全是在东西走向的汶河大道上进行的,如果规定向东为正,向西为负,这天下午他的行车里程(单位:千米)如下表所示:
第一次第二次第三次第四次第五次第六次第七次第八次第九次第十次第十一次
+15-2+5-1+10-3-2+12+4-5+6
(1)将最后一名乘客送到目的地时,小王距下午出车时的出发点多远?
(2)若汽车耗油量为0.1升/千米,这天下午小王共耗油多少升?

分析 (1)根据有理数的加法运算,可得距出发点多远:
(2)根据行车路程×单位耗油量,可得总耗油量.

解答 解:(1)15-2+5-1+10-3-2+12+4-5+6=39(千米)
答:将最后一名乘客送到目的地时,小王距下午出车时的出发点39千米;

(2)|+15|+|-2|+|+5|+|-1|+|+10|+|-3|+|-2|+|+12|+|+4|+|-5|+|+6|=65,
65×0.1=6.5(升).
答:这天下午小王的汽车共耗油6.5升.

点评 本题考查了正数和负数,正确计算有理数的加减法是解(1)题关键.解答(2)题时,一定要注意所走的总路程为所走路程的绝对值的和.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.如果60m表示“向北走60m”,那么“向南走20m”可以表示为(  )
A.-20mB.-40mC.20mD.40m

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若二次函数y=ax2+3x-1与x轴有两个交点,则a的取值范围是a>-$\frac{9}{4}$且a≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,求证∠BDE=∠C.
证明:∵AD⊥BC,FG⊥BC (已知),
∴∠ADC=∠FGC=90°垂直的定义.
∴AD∥FG同位角相等,两直线平行.
∴∠1=∠3两直线平行,同位角相等
又∵∠1=∠2,(已知),
∴∠3=∠2等量代换.
∴ED∥AC内错角相等,两直线平行.
∴∠BDE=∠C两直线平行,同位角相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)若5a+1和a-19是数m的平方根,求m的值.
(2)已知$\sqrt{1-3a}$和|8b-3|互为相反数,求(ab)2-27的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,抛物线y=ax2+bx+4与x轴交于A(-2,0),D两点,与y轴交于点C,对称轴x=3交x轴交于点B.
(1)求抛物线的解析式.
(2)点M是x轴上方抛物线上一动点,过点M作MN⊥x轴于点N,交直线BC于点E.设点M的横坐标为m,用含m的代数式表示线段ME的长,并求出线段ME长的最大值.
(3)若点P在y轴的正半轴上,连接PA,过点P作PA垂线,交抛物线的对称轴于点Q.是否存在点P,使以点P、A、Q为顶点的三角形与△BAQ全等?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.[问题提出]:如图1,由n×n×n(长×宽×高)个小立方块组成的正方体中,到底有多少个长方体(包括正方体)呢?

[问题探究]:我们先从较为简单的情形入手.
(1)如图2,由2×1×1个小立方块组成的长方体中,长共有1+2=$\frac{2×3}{2}$=3条线段,宽和高分别只有1条线段,所以图中共有3×1×1=3个长方体.
(2)如图3,由2×2×1个小立方块组成的长方体中,长和宽分别有1+2=$\frac{2×3}{2}$=3条线段,高有1条线段,所以图中共有3×3×1=9个长方体.
(3)如图4,由2×2×2个小立方体组成的正方体中,长、宽、高分别有1+2=$\frac{2×3}{2}$=3条线段,所以图中共有27个长方体.
(4)由2×3×6个小立方块组成的长方体中,长共有1+2=$\frac{3×2}{2}$=3条线段,宽共有6条线段,高共有21条线段,所以图中共有63个长方体.
[问题解决]
(5)由n×n×n个小立方块组成的正方体中,长、宽、高各有$\frac{n(n+1)}{2}$线段,所以图中共有$\frac{{n}^{3}(n+1)^{3}}{8}$个长方体.
[结论应用]
(6)如果由若干个小立方块组成的正方体中共有1000个长方体,那么组成这个正方体的小立方块的个数是多少?请通过计算说明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知一个正数的两个平方根分别是3a+2和a+14,求这个数的立方根.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列方程组中,不是二元一次方程组的是(  )
A.$\left\{\begin{array}{l}{2x-5y=8}\\{x=y}\end{array}\right.$B.$\left\{\begin{array}{l}{x+y=1}\\{x=y+z}\end{array}\right.$
C.$\left\{\begin{array}{l}{x-3y=2}\\{2x+y=5}\end{array}\right.$D.$\left\{\begin{array}{l}{\frac{1}{2}x+\frac{1}{3}y=2}\\{\frac{1}{3}x-\frac{1}{2}y=3}\end{array}\right.$

查看答案和解析>>

同步练习册答案