精英家教网 > 初中数学 > 题目详情

【题目】运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8。则图中阴影部分的面积是( )

A.
B.
C.
D.

【答案】A
【解析】解:作GH⊥AB,交CD于G,交EF于H,连接OC、OD、OE、OF.
∵⊙O的直径AB=10,CD=6,EF=8,且AB‖CD‖EF,
∴OG⊥CD,OH⊥EF,
∴∠COG=∠DOG,∠EOH=∠FOH,
∴OE=OF=OC=OD=5,CG=3,EH=4,
∴OG=4,OH=3,
∵AB‖CD‖EF,
∴S△OCD=S△BCD , S△OEF=S△BEF
∴S阴影=S扇形ODC+S扇形OEF=S半圆=π×52=π.
故答案是:π.
【考点精析】解答此题的关键在于理解垂径定理的推论的相关知识,掌握推论1:A、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧B、弦的垂直平分线经过圆心,并且平分弦所对的两条弧C、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2 :圆的两条平行弦所夹的弧相等,以及对扇形面积计算公式的理解,了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD,M、N两动点分别从A.C两点同时出发沿正方形的边开始移动,点M按逆时针方向移动,点N按顺时针方向移动,若点M的速度是点N4倍,则它们第2018次相遇在边_____上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,如果边长为1的等边△PQR沿着边长为1的正方形ABCD的外部的边如图位置开始顺时针连续滚动,当它滚动4次时,点P所经过的路程是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,这是某市部分简图,为了确定各建筑物的位置:

(1)请你以火车站为原点建立平面直角坐标系.

(2)写出市场的坐标为   ;超市的坐标为   

(3)请将体育场为A、宾馆为C和火车站为B看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y= x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.

(1)求抛物线的解析式;
(2)判断直线l与⊙E的位置关系,并说明理由;
(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOCCODBOD=2:3:4,且AOB三点在一条直线上,OEOF分别平分∠AOC和∠BODOG平分∠EOF,求∠GOF的度数.将下列解题过程补充完整.

解:因为,∠AOCCODBOD=2:3:4,

所以∠AOC=   COD=   BOD=   

因为OEOF分别平分∠AOC和∠BOD

所以∠AOE=   BOF=   

所以∠EOF=   

又因为   ,所以∠GOF=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正△ABO的边长为2,O为坐标原点,A在 轴上,B在第二象限。△ABO沿 轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是;翻滚2017次后AB中点M经过的路径长为.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象.下列说法错误的是( )

A.乙先出发的时间为0.5小时
B.甲的速度是80千米/小时
C.甲出发0.5小时后两车相遇
D.甲到B地比乙到A地早 小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

(1)x﹣4=2﹣5x; (2)﹣(x﹣3)=3(2﹣5x);

(3)4x﹣2(﹣x)=1; (4)﹣1=

查看答案和解析>>

同步练习册答案