精英家教网 > 初中数学 > 题目详情

【题目】如图,已知MB=ND,∠MBA=NDC,下列哪个条件不能判定ABM≌△CDN

A.AM=CNB.AB=CD C.AMCN D.M=N

【答案】A

【解析】

三角形全等的判定定理有:边角边、角角边、角边角和边边边定理,逐项分析即可判断;

解:AMB=NDAM=CN ,∠MBA=NDCABMCDN不一定全等,错误,符合题意;

B、∵MB=NDAM=CN AB=CD ,∴ABM≌△CDNSSS), 正确,不符合题意;

C、∵ AMCN,∴∠A=NCD,又∠MBA=NDCMB=ND,∴ABM≌△CDAAS), 正确,不符合题意;

D、∵∠M=NMB=ND,∠MBA=NDC,∴ABM≌△CDNASA),正确,不符合题意;

故答案为:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC,△CDE均为等边三角形(每个内角都是60°),连接BDAE交于点OBCAE交于点P.试说明:∠POB=60°.经过观察分析,解题的关键是先利用( )说明△EAC≌△DBC

A.SSSB.ASAC.SASD.AAS

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某运动品牌对第一季度甲、乙两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示,已知一月份乙款运动鞋的销售量是甲款的,第一季度这两款运动鞋的销售单价保持不变(销售额=销售单价×销售量)

1)求一月份乙款运动鞋的销售量.

2)求两款运动鞋的销售单价(单位:元)

3)请补全两个统计图.

4)结合第一季度的销售情况,请你对这两款运动鞋的进货,销售等方面提出一条建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条直线上依次有A,B,C三个海岛,某海巡船从A岛出发沿直线匀速经B岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(时)后,与B港的距离为y(海里),y与x之间的函数图象如图所示.

(1)A,C两港口间的距离为海里,a=
(2)求y与x之间的函数关系式.
(3)在B岛上有一个不间断发射信号的信号发射台,发射的信号覆盖半径为8海里的圆形区域,求该海巡船鞥接受到该信号的时间有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AE平分∠BACBEAE于点E,点FBC的中点.

1)如图1BE的延长线与AC边相交于点D,求证:EF=ACAB);

2)如图2,请直接写出线段ABACEF之间的数量关系。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(1,0)、B(3,0).抛物线y=x2﹣2mx+m2﹣4的顶点为P,与y轴的交点为Q.

(1)填空:点P的坐标为;点Q的坐标为(均用含m的代数式表示)
(2)当抛物线经过点A时,求点Q的坐标.
(3)连接QA、QB,设△QAB的面积为S,当抛物线与线段AB有公共点时,求S与m之间的函数关系式.
(4)点P、Q不重合时,以PQ为边作正方形PQMN(P、Q、M、N分别按顺时针方向排列).当正方形PQMN的四个顶点中,位于x轴两侧或y轴两侧的顶点个数相同时,直接写出此时m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为4的正方形纸片ABCD折叠,使得点A落在边CD的中点E处,折痕为FG,点FG分别在边ADBC上,则折痕FG的长度为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.

(1)求点C的坐标及反比例函数的解析式.
(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图像如图所示.根据图像解答下列问题:

(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?

(2)分别求出甲、乙两人的行驶速度;

(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)

查看答案和解析>>

同步练习册答案