精英家教网 > 初中数学 > 题目详情
11.如图,AB∥CD,∠EAB=75°,∠C=51°,则∠E=24°.

分析 首先求出∠EFB的度数,然后根据三角形外角的知识求出∠E的度数.

解答 解:如图,延长BA交CE于点F.
∵AB∥CD,
∴∠EFB=∠C=51°,
∵∴∠EAB=∠EFB+∠E,∠EAB=75°,
∴∠E=75°-51°=24°.
故答案为24°.

点评 此题考查了平行线的性质与三角形外角的性质.此题比较简单,解题的关键是注意掌握两直线平行,同位角相等定理的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN:NB为(  )
A.3:5:4B.1:3:2C.1:4:2D.3:6:5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,AB=AC,D是△ABC的外心,连接AD、CD.将△ADC绕点A顺时针旋转到△AEB,连接ED.
(1)求证:△AED∽△ABC;
(2)连接BD,判断四边形AEBD的形状并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.用加减法解二元一次方程$\left\{\begin{array}{l}{3x+5y=19}\\{8x-3y=62}\end{array}\right.$
思考:(1)用加减法解二元一次方程组,第一个加数的系数应具备什么特点?
(2)3和8的公倍数是24,5和3的最小公倍数是15,因此可把方程变形,使未知数y的系数互为相反数.
(3)①×3,得9x+15y=57;
②×5,得40x-15y=310.
(4)所得的两个方程怎样可消去一个未知数,得到一个一元一次方程?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边的中点,连接EF,若EF=$\sqrt{3}$,BD=4,则菱形ABCD的边长为(  )
A.2$\sqrt{3}$B.$\sqrt{6}$C.$\sqrt{7}$D.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.
(1)求证:四边形ABEF是正方形;
(2)如果AB=4,AD=7,求tan∠ADP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP翻折,点B的对应点B′恰好落在DA的延长线上,且PB′⊥AD,若CD=3,BC=4,则BP长度为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{3}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,四边形ACBD中,∠C=∠D=90°,BC=BD.求证:AC=AD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,四边形ABCD为平行四边形,试说明:
(1)$\frac{AE}{AD}$=$\frac{AB}{CF}$;
(2)若连接AC,交DE于点G,则DG是EG、FG的比例中项.

查看答案和解析>>

同步练习册答案