.如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=
,OB交⊙O于点D,作AC⊥OB,垂足为M,并交⊙O于点C,连接BC.
(1)求证:BC是⊙O的切线;
(2)过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.
![]()
【考点】切线的判定;全等三角形的判定与性质;勾股定理;垂径定理.
【专题】证明题.
【分析】(1)连结OC,根据垂径定理由AC⊥OB得AM=CM,于是可判断OB为线段AC的垂直平分线,所以BA=BC,然后利用“SSS”证明△OAB≌△OCB,得到∠OAB=∠OCB,由于∠OAB=90°,则∠OCB=90°,于是可根据切线的判定定理得BC是⊙O的切线;
(2)在Rt△OAB中,根据勾股定理计算出OB=2,根据含30度的直角三角形三边的关系得∠ABO=30°,∠AOB=60°,在Rt△PBO中,由∠BPO=30°得到PB=
OB=2
;在Rt△PBD中,BD=OB﹣OD=1,根据勾股定理计算出PD=
,然后利用正弦的定义求sin∠BPD的值.
【解答】(1)证明:连结OC,如图,
∵AC⊥OB,
∴AM=CM,
∴OB为线段AC的垂直平分线,
∴BA=BC,
在△OAB和△OCB中
,
∴△OAB≌△OCB(SSS),
∴∠OAB=∠OCB,
∵OA⊥AB,
∴∠OAB=90°,
∴∠OCB=90°,
∴OC⊥BC,
故BC是⊙O的切线;
(2)解:在Rt△OAB中,OA=1,AB=
,
∴OB=
=2,
∴∠ABO=30°,∠AOB=60°,
∵PB⊥OB,
∴∠PBO=90°,∠BPO=30°,
在Rt△PBO中,OB=2,
∴PB=
OB=2
,
在Rt△PBD中,BD=OB﹣OD=2﹣1=1,PB=2
,
∴PD=
=
,
∴sin∠BPD=
=
=
.
![]()
【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、勾股定理和全等三角形的判定与性质.
科目:初中数学 来源: 题型:
在平面直角坐标系内,已知点A(0,6),点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t=2秒时,求四边形OPQB的面积;
(3)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
学校李老师布置了两道解方程的作业题:
选用合适的方法解方程:
(1)x(x+1)=2x;(2)(x+1)(x﹣3)=7
以下是王萌同学的作业:
| 解:(1)移项,得x(x+1)﹣2x=0 分解因式得,x(x+1﹣2)=0 所以,x=0,或x﹣1=0 所以,x1=0,x2=1 | (2)变形得,(x+1)(x﹣3)=1×7 所以,x+1=7,x﹣3=1 解得,x1=6,x2=4 |
请你帮王萌检查他的作业是否正确,把不正确的改正过来.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com