【题目】如图,表示某商场一天的手提电脑销售额与销售量的关系,表示该商场一天的手提电脑销售成本与销售量的关系.
(1)当销售量台时,销售额_______________万元,销售成本___________万元,利润(销售额销售成本)_____________万元.
(2)一天销售__________台时,销售额等于销售成本.
(3)当销售量________时,该商场盈利(收入大于成本),当销售量__________时,该商场亏损(收入小于成本).
(4)对应的函数关系式是______________.
(5)请你写出利润(万元)与销售量(台)间的函数关系式_____________,其中,的取值范围是__________.
【答案】(1)2,3,-1;(2)4; (3)大于4台,小于4台;(4)y=x;(5)Q= ,x≥0且x为整数.
【解析】
(1)直接根据图象,,即可得到答案;
(2)根据图象,,可得:,的交点坐标是:(4,4),进而即可求解;
(3)直接根据图象,,即可得到答案;
(4)设的解析式为:y=kx,根据待定系数法,即可得到答案;
(5)设的解析式为:y=kx+b,根据待定系数法,进而即可得到答案;
(1)根据图象,,可得:当销售量(台)时,销售额2(万元),销售成本3(万元),利润(销售额销售成本)-1(万元).
故答案是:2,3,-1;
(2)根据图象,,可得:,的交点坐标是:(4,4),
∴一天销售4台时,销售额等于销售成本.
故答案是:4;
(3)根据图象,,可得:当销售量大于4台时,该商场盈利(收入大于成本),当销售量小于4台时,该商场亏损(收入小于成本).
故答案是:大于4台,小于4台;
(4)设的解析式为:y=kx,
把(4,4)代入y=kx得:4=4k,解得:k=1,
∴的解析式为:y=x,
故答案是:y=x;
(5)设的解析式为:y=kx+b,
把(0,2),(4,4)代入y=kx+b,得:,解得:,
∴的解析式为:y=x+2,
∴Q=,
的取值范围是:x≥0且x为整数.
故答案是:Q= ,x≥0且x为整数.
科目:初中数学 来源: 题型:
【题目】(3分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )
A. 如图1,展开后测得∠1=∠2
B. 如图2,展开后测得∠1=∠2且∠3=∠4
C. 如图3,测得∠1=∠2
D. 如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.
(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;
(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图示,下列结论:
(1)b<0;(2)c>0;(3)b2﹣4ac>0; (4)a﹣b+c<0,
(5)2a+b<0; (6)abc>0;其中正确的是_____;(填写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:
(1)容器内原有水多少?
(2)求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?
图 ① 图②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.
(1)求直线的解析式;
(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com