分析 (1)利用平行四边形的性质得出AF∥EC,进而得出AF=EC,进而求出即可;
(2)利用菱形的性质以及三角形内角和定理得出∠2=∠ACE,进而求出∠BAE=∠B,得出BE=AE=CE,再利用直角三角形斜边上的中线性质得出答案.
解答 (1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC,
∴AF∥EC,
∵BE=DF,
∴AF=EC,
∴四边形AECF是平行四边形.
(2)解:∵AC平分∠EAF,
∴∠1=∠2,
∵AD∥BC,
∴∠1=∠ACE,
∴∠2=∠ACE,
∴AE=CE,
∵∠BAC=90°,
∴∠BAE=90°-∠1,∠B=90°-∠ACE,
∴∠BAE=∠B,
∴AE=BE,
∴BE=AE=CE=$\frac{1}{2}$BC=4cm.
点评 此题主要考查了平行四边形的性质与判定、等腰三角形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,证出BE=AE=CE是解决问题(2)的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | m≥-2 | B. | m≤-2 | C. | m≤2 | D. | m≥2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com