精英家教网 > 初中数学 > 题目详情
4.如图,在Rt△AOB中,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长度的最小值为$\sqrt{7}$.

分析 首先连接OP、OQ,根据勾股定理知PQ2=OP2-OQ2,可得当OP⊥AB时,即线段PQ最短,然后由勾股定理即可求得答案.

解答 解:连接OP、OQ.
∵PQ是⊙O的切线,
∴OQ⊥PQ;
根据勾股定理知PQ2=OP2-OQ2
∴当PO⊥AB时,线段PQ最短,
∵在Rt△AOB中,OA=OB=4,
∴AB=$\sqrt{2}$OA=4$\sqrt{2}$,
∴OP=$\frac{OA•OB}{AB}$=2$\sqrt{2}$,
∴PQ=$\sqrt{{OP}^{2}{-OQ}^{2}}$=$\sqrt{7}$,
故答案为:$\sqrt{7}$.

点评 本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意得到当PO⊥AB时,线段PQ最短是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.
(1)按要求作图:
①画出△ABC关于原点O的中心对称图形△A1B1C1
②画出将△ABC绕点O顺时针旋转90°得到△A2B2C2
(2)按照(1)中②作图,回答下列问题:△A2B2C2中顶点A2坐标为(4,2);若P(a,b)为△ABC边上一点,则点P对应的点Q的坐标为(b,-a).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.不等式组$\left\{\begin{array}{l}{x+1>0}\\{x-2≤-1}\end{array}\right.$中的两个不等式的解集在同一个数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列等式从左到右的变形,属于因式分解的是(  )
A.(x+3)(x-3)=x2-9B.x2-4+3x=(x+2)(x-2)+3x
C.(x-1)2=x2-2x+1D.xy2-x2y=xy(y-x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.【问题情境】
张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.

小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,
可得:PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD-PE=CF;
【结论运用】请运用上述解答中所积累的经验和方法完成下列两题:
如图④,在平面直角坐标系中有两条直线l1:y=$\frac{3}{4}$x+3、l2:y=-3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,该几何体的俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.计算:(-$\frac{x}{{y}^{2}}$)2•[-($\frac{y}{x}$)2]3÷($\frac{-y}{x}$)4=-$\frac{1}{{y}^{2}}$.

查看答案和解析>>

科目:初中数学 来源:2017届福建省仙游县郊尾、枫亭五校教研小片区九年级下学期第一次月考数学试卷(解析版) 题型:解答题

先化简,当x=1时,请你选择一个恰当的y值代入求值.

查看答案和解析>>

同步练习册答案