精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC=4,BC=2,点P、E、F分别为边BC、AB、AC上的任意点,则PE+PF的最小值是_____

【答案】

【解析】

当PEAB,PFAC时,PE+PF的值最小.

解:如图,作CGAB于G,PHCG于H,

当PEAB,PFAC时,则EGH=GHP=PEG=90°,

四边形PEGH为矩形,

PE=HG,PHAB,

∴∠B=HPC,

AB=AC,

∴∠B=FCP,

∴∠HPC=FCP,

∵∠PHC=CFP=90°,PC=CP,

∴△PHC≌△CFP(AAS),

CH=PF

PE+PF=HG+CH=CG,

故此时PE+PF将取得最小值.

在RtACG中,

AC=4,

CG2=AC2-AG2=42-AG2

在RtBCG中,

BC=2,BG=AB-AG=4-AG,

CG2=BC2-BG2=22-(4-AG)2

42-AG2=22-(4-AG)2

AG=

CG===

PE+PF=

即PE+PF的最小值为.

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ABC是等边三角形,以BC为直径的半圆O与边AB相交于点D,DE⊥AC,垂足为点E.

(1)判断DE与⊙O的位置关系,并证明你的结论;

(2)若AE=1,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=6AC=8BC=10P为边BC上一动点(且点P不与点BC重合)PEABEPFACFMEF中点.AM的长为x,则x的取值范围是(  )

A. 4≥x2.4 B. 4≥x≥2.4 C. 4x2.4 D. 4x≥2.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABBC2,以AB为直径的⊙O分别交BCAC于点DE且点DBC的中点.

1)求证:ABC为等边三角形;

2)求DE的长;

3)在线段AB的延长线上是否存在一点P,使PBD≌△AED?若存在,请求出PB的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AD=12,GBC的中点.将△ABG沿AG对折至△AFG,延长GFDC于点E,则DE的长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙的外接圆,直线相切于点,且

)求证: 平分

)作的平分线于点,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.如图所示,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD,其中正确的有( )

A. 3个 B. 4个 C. 5个 D. 6个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交ACAB边于EF点.若点DBC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为(  )

A. 6 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线L1:y=﹣x2+bx+c经过点A(1,0)和点B(5,0)已知直线l的解析式为y=kx﹣5.

(1)求抛物线L1的解析式、对称轴和顶点坐标.

(2)若直线l将线段AB分成1:3两部分,求k的值;

(3)当k=2时,直线与抛物线交于M、N两点,点P是抛物线位于直线上方的一点,当PMN面积最大时,求P点坐标,并求面积的最大值.

(4)将抛物线L1在x轴上方的部分沿x轴折叠到x轴下方,将这部分图象与原抛物线剩余的部分组成的新图象记为L2

直接写出y随x的增大而增大时x的取值范围;

直接写出直线l与图象L2有四个交点时k的取值范围.

查看答案和解析>>

同步练习册答案