精英家教网 > 初中数学 > 题目详情

【题目】.如图所示,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD,其中正确的有( )

A. 3个 B. 4个 C. 5个 D. 6个

【答案】D

【解析】∵△ABC与△BDE为等边三角形,

∴AB=BC,BD=BE,∠ABC=∠DBE=60°,

∴∠ABE=∠CBD,

AB=BC,BD=BE,∠ABE=∠CBD

∴△ABE≌△CBD,

∴AE=CD,∠BDC=∠AEB,

又∵∠DBG=∠FBE=60°,

∴△BGD≌△BFE,

∴BG=BF,∠BFG=∠BGF=60°,

∴△BFG是等边三角形,

∴FG∥AD,

∵BF=BG,AB=BC,∠ABF=∠CBG=60°,

∴△ABF≌△CGB,

∴∠BAF=∠BCG,

∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,

∴∠AHC=60°,

∵∠FHG+∠FBG=120°+60°=180°,

∴B、G、H、F四点共圆,

∵FB=GB,

∴∠FHB=∠GHB,

∴BH平分∠GHF,

∴题中①②③④⑤⑥都正确.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上,如果BC=5,ABC的面积是10,那么这个正方形的边长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】9分)如图,AB是半圆O的直径,点P是半圆上不与点AB重合的一个动点,延长BP到点C,使PC=PBDAC的中点,连接PDPO.

1)求证:△CDP≌△POB

2)填空:

AB=4,则四边形AOPD的最大面积为

连接OD,当∠PBA的度数为 时,四边形BPDO是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=4,BC=2,点P、E、F分别为边BC、AB、AC上的任意点,则PE+PF的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线分别与轴,轴交于两点.

(1)求线段AB的长度;

(2)若点在第二象限,且△为等腰直角三角形,求点的坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有两角及其中一角的平分线对应相等的两个三角形全等_____命题.(填

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB1,以线段BCCD上两点PQ和方形的点A为顶点作正方形的内接等边APQ,求APQ的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形是矩形,点的坐标为,点的坐标为.从点出发,沿以每秒1个单位长度的速度向点运动,同时点从点出发,沿以每秒2个单位长度的速度向点运动,当点与点重合时运动停止.设运动时间为.

(1)当时,线段的中点坐标为________;

(2)当相似时,求的值;

(3)当时,抛物线经过两点,与轴交于点,抛物线的顶点为,如图2所示.问该抛物线上是否存在点,使,若存在,求出所有满足条件的点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案