精英家教网 > 初中数学 > 题目详情

【题目】某市为了创建绿色生态城市,在城东建了东州湖景区,小明和小亮想测量东州湖东西两端AB间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算东州湖东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563cos73≈0.2924tan73°≈3.2709≈1.414.)

【答案】1057米.

【解析】

先根据题意得出BCD是等腰直角三角形,故可得出CDBD,再由锐角三角函数的定义得出AD的长,进而可得出结论.

∵∠BCD45°CDAB

∴△BCD是等腰直角三角形,

CDBD

BC350米,

CDBD350×175≈175×1.414247.45米,

ADCDtan73°≈247.45×3.2709≈809.38米,

ABAD+BD809.38+247.45≈1057(米).

答:东州湖东西两端之间AB的长为1057米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于点,点,与y轴交于点C,且过点.点PQ是抛物线上的动点.

(1)求抛物线的解析式;

(2)当点P在直线OD下方时,求面积的最大值.

(3)直线OQ与线段BC相交于点E,当相似时,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:如图,二次函数经过点B40)和点E-2-3)两点,与x轴的另一个交点为A.点D是线段BE上的动点,过点DDFBE,交y轴于点F,交抛物线于点P

1)求出抛物线和直线BE的解析式;

2)当△DCF≌△BOC时,求出此时点D的坐标;

3)设点P的横坐标为m

①请写出线段PD的长度为(用含m的式子表示);

②当m为何值时,线段PD有最大值,并写出其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%

1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.

2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?

3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 在三边互不相等的ABC中, DEF分别是ABACBC边的中点.连接DE,过点CCMABDE的延长线于点M,连接CDEF交于点N,则图中全等三角形共有(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出(1)如图①,在ABC中,BC6DBC上一点,AD4,则ABC面积的最大值是   

问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.

问题解决(3)如图③,ABC是葛叔叔家的菜地示意图,其中AB30米,BC40米,AC50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映yx之间关系的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.

(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;

(2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.

a.甲、乙两校40名学生成绩的频数分布统计表如下:

成绩x

学校

4

11

13

10

2

6

3

15

14

2

(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)

b.甲校成绩在这一组的是:

70 70 70 71 72 73 73 73 74 75 76 77 78

c.甲、乙两校成绩的平均分、中位数、众数如下:

学校

平均分

中位数

众数

74.2

n

5

73.5

76

84

根据以上信息,回答下列问题:

1)写出表中n的值;

2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是_____________校的学生(填),理由是__________

3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.

查看答案和解析>>

同步练习册答案