精英家教网 > 初中数学 > 题目详情

【题目】小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:
(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;
(2)求图中t的值;
(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?

【答案】
(1)解:当0≤x≤8时,设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,

依据题意,得

解得:

故此函数解析式为:y=10x+20;


(2)解:在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=

依据题意,得:100=

即m=800,

故y=

当y=20时,20=

解得:t=40;


(3)解:∵45﹣40=5≤8,

∴当x=5时,y=10×5+20=70,

答:小明散步45分钟回到家时,饮水机内的温度约为70℃.


【解析】(1)利用待定系数法代入函数解析式求出即可;(2)首先求出反比例函数解析式进而得出t的值;(3)利用已知由x=5代入求出饮水机内的温度即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是(
A.3
B.
C.
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点

(1)求证:ABM≌△DCM

(2)判断四边形MENF是什么特殊四边形,并证明你的结论;

(3)当AD:AB= _时,四边形MENF是正方形(只写结论,不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=ACDBC的中点,AC的垂直平分线分别交ACADAB于点EOF,则图中全等的三角形的对数是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习三角形中位线的性质时,小亮对课本给出的解决办法进行了认真思考:

课本研究三角形中位线性质的方法
已知:如图①,已知△ABC中,D,E分别是AB,AC两边中点.求证:DE∥BC,DE= BC.
证明:延长DE至点F,使EF=DE,连接FC.…则△ADE≌△CFE.∴…



请你利用小亮的发现解决下列问题:
(1)如图③,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF.
请你帮助小亮写出辅助线作法并完成论证过程:
(2)解决问题:如图⑤,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线.过点D,E作DF∥EG,分别交BC于点F,G,过点A作MN∥BC,分别与FD,GE的延长线交于点M,N,则四边形MFGN周长的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】吉林省广播电视塔(简称“吉塔”)是我省目前最高的人工建筑,也是俯瞰长春市美景的最佳去处.某科技兴趣小组利用无人机搭载测量仪器测量“吉塔”的高度.已知如图将无人机置于距离“吉塔”水平距离138米的点C处,则从无人机上观测塔尖的仰角恰为30°,观测塔基座中心点的俯角恰为45°.求“吉塔”的高度.(注: ≈1.73,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,M,N分别为BE,CD的中点.

(1)求证:△ABE≌ACD;

(2)判断△AMN的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )

A. ABBC时,它是菱形 B. ACBD时,它是菱形

C. 当∠ABC90°时,它是矩形 D. ACBD时,它是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E

1)证明:四边形ACDE是平行四边形;

2)若AC=8BD=6,求△ADE的周长.

查看答案和解析>>

同步练习册答案