【题目】甲、乙两班分别选5名同学组成代表队参加学校组织的“国防知识”选拔赛,现根据成绩(满分10分)制作如图统计图和统计表(尚未完成)
甲、乙两班代表队成绩统计表
平均数 | 中位数 | 众数 | 方差 | |
甲班 | 8.5 | 8.5 | a | 0.7 |
乙班 | 8.5 | b | 10 | 1.6 |
请根据有关信息解决下列问题:
(1)填空:a= ,b= ;
(2)学校预估如果平均分能达8.5分,在参加市团体比赛中即可以获奖,现应选派 代表队参加市比赛;(填“甲”或“乙”)
(3)现将从成绩满分的3个学生中随机抽取2人参加市国防知识个人竞赛,请用树状图或列表法求出恰好抽到甲,乙班各一个学生的概率.
【答案】(1)8.5,b=8;(2)甲班;(3).
【解析】
(1)利用条形统计图,结合众数、中位数的定义分别求出答案;
(2)利用平均数、方差的定义分析得出答案;
(3)首先根据题意列表,然后由列表求得所有等可能的结果与恰好抽到甲,乙班各一个学生的情况,再利用概率公式求解即可求得答案.
解:(1)甲的众数为:8.5,乙的中位数为:8,
故答案为:8.5,8;
(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;
从方差看,甲班的方差小,所以甲班的成绩更稳定.
故答案为:甲班;
(3)列表如下:
甲 | 乙1 | 乙2 | |
甲 | ﹣﹣﹣ | 乙1 甲 | 乙2 甲 |
乙1 | 甲 乙1 | ﹣﹣﹣ | 乙2乙1 |
乙2 | 甲 乙2 | 乙1乙2 | ﹣﹣﹣ |
所有等可能的结果为6种,其中抽到甲班、乙班各一人的结果为4种,
所以P(抽到A,B)= .
科目:初中数学 来源: 题型:
【题目】2019年足球亚洲杯正在阿联酋进行,这项起源于我国“蹴鞠”的运动项目近年来在我国中小学校园得到大力推广,某次校园足球比赛规定:胜一场得3分,平一场得1分,负一场得0分,某足球队共进行了8场比赛,得了12分,该队获胜的场数有几种可能( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形AOBC中,若∠1=∠2,∠3+∠4=180°,则下列结论正确的有( )
(1)A、O、B、C四点共圆
(2)AC=BC
(3)cos∠1=
(4)S四边形AOBC=
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=( )
A. 4 B. 6 C. 8 D. 不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.
(Ⅰ)AE的长等于 ;
(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;
(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离A地的距离S(km)与时间t(h)的关系,结合图像回答下列问题:
(1)表示乙离开A地的距离与时间关系的图像是________(填);
甲的速度是__________km/h;乙的速度是________km/h。
(2)甲出发后多少时间两人恰好相距5km?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC放在以O为原点的平面直角坐标系中,A(3,0),C(0,2),点E是AB的中点,点F在BC边上,且CF=1,若M为x轴上的动点,N为y轴上的动点,则四边形MNFE的周长最小值是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com