精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线相交于点DDEABAB的延长线于点EDFAC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正确的有(

A.B.C.D.

【答案】B

【解析】

①由角平分线的性质可知①正确;②由题意可知∠EAD=FAD=30°,故此可知ED=ADDF=AD,从而可证明②正确;③若DM平分∠ADF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BDDC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.

如图所示:连接BDDC

①∵AD平分∠BACDEABDFAC

ED=DF

∴①正确;

②∵∠EAC=60°,AD平分∠BAC

∴∠EAD=FAD=30°,

DEAB

∴∠AED=90°,

∵∠AED=90°,∠EAD=30°,

ED=AD

同理:DF=AD

DE+DF=AD

∴②正确;

③由题意可知:∠EDA=ADF=60°,

假设MD平分∠ADF,则∠ADM=30°.则∠EDM=90°,

又∵∠E=BMD=90°,

∴∠EBM=90°,

∴∠ABC=90°,

∵∠ABC是否等于90°不知道,

∴不能判定MD平分∠ADF

故③错误;

④∵DMBC的垂直平分线,

DB=DC

RtBEDRtCFD

RtBEDRtCFDHL),

BE=FC

AB+AC=AEBE+AF+FC

又∵AE=AFBE=FC

AB+AC=2AE

故④正确,

所以正确的有3个,

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把棱长为1cm的若干个小正方体摆放如图所示的几何体,然后在露出的表面上涂上颜色不含底面

该几何体中有多少小正方体?

画出主视图.

求出涂上颜色部分的总面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法把二次函数yl+2xx2化为ya(xh)2+k的形式,作出它的草图,回答下列问题.

(1)求抛物线的顶点坐标和它与x轴的交点坐标;

(2)x取何值时,yx的增大而增大?

(3)x取何值时,y的值大于0?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x+4

1)用配方法确定它的顶点坐标、对称轴;

2x取何值时,yx增大而减小?

3x取何值时,抛物线在x轴上方?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察如图图形,它是按一定规律排列的,根据图形所揭示的规律我们可以发现:第1个图形十字星与五角星的个数和为7,第2个图形十字星与五角星的个数和为10,第3个图形十字星与五角星的个数和为13,按照这样的规律.则第8个图形中,十字星与五角星的个数和为(  )

A. 25B. 27C. 28D. 31

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxc的图象如图,则下列叙述正确的是( )

A. abc0 B. 3ac0

C. b24ac≥0 D. 将该函数图象向左平移2个单位后所得到抛物线的解析式为yax2c

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4cm,动点PQ同时从点A出发,以1cm/s的速度分别沿ABCADC的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则yx(0≤x≤8)之间的函数关系可用图象表示为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yx2x3x轴的交点为AD(AD的右侧),与y轴的交点为C.

(1)直接写出ADC三点的坐标;

(2)若点M在抛物线上,使得MAD的面积与CAD的面积相等,求点M的坐标;

(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以ABCP四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种规律下去,第n次移动到点An,如果点An,与原点的距离不少于20,那么n的最小值是(

A. 11B. 12C. 13D. 20

查看答案和解析>>

同步练习册答案