【题目】如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4: 3,点P在半圆弧AB上运动(不与A、B两点重合),过点C作CP的垂线CD交PB的延长线于D点.
(1)求证:AC·CD=PC·BC;
(2)当点P运动到AB弧中点时,求CD的长;
(3)当点P运动到什么位置时,△PCD的面积最大?并求出这个最大面积S。
【答案】(1)见解析(2)(3)
【解析】(1)由题意,AB是⊙O的直径;∴∠ACB=90。,∵CD⊥CP,∴∠PCD=90。
∴∠ACP+∠BCD=∠PCB+∠DCB=90。,∴∠ACP=∠DCB,又∵∠CBP=∠D+∠DCB,∠CBP=∠ABP+∠ABC,∴∠ABC=∠APC,∴∠APC=∠D,∴△PCA∽△DCB;∴,∴AC·CD=PC·BC
(2)当P运动到AB弧的中点时,连接AP,
∵AB是⊙O的直径,∴∠APB=90。,又∵P是弧AB的中点,∴弧PA=弧PB,∴AP=BP,∴∠PAB=∠PBA=45.,又AB=5,∴PA=,过A作AM⊥CP,垂足为M,在Rt△AMC中,∠ACM=45,∴∠CAM=45,∴AM=CM=,在Rt△AMP中,AM2+AP2=PM2,∴PM=,∴PC=PM+=。由(1)知:AC·CD=PC·BC ,3×CD=PC×4,∴CD=
(3)由(1)知:AC·CD=PC·BC,所以AC:BC=CP:CD;
所以CP:CD=3:4,而△PCD的面积等于·=,
CP是圆O的弦,当CP最长时,△PCD的面积最大,而此时C
P就是圆O的直径;所以CP=5,∴3:4=5:CD;
∴CD=,△PCD的面积等于·==;
(1)通过求证△PCA∽△DCB,即可求证AC·CD=PC·BC
(2)当P运动到AB弧的中点时,连接AP,求出PA,过A作AM⊥CP,垂足为M,求出AM,
从而求出PC ,由(1)可知CD的长
(3)当CP最长时,即为圆的直径,△PCD的面积最大,由(1)可求得CD的长,从而求出△PCD的面积
科目:初中数学 来源: 题型:
【题目】在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是( )
A.95
B.90
C.85
D.80
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合题
(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若xa+2+yb﹣1+3=0是关于x,y的二元一次方程,则a、b的值为( )
A.a=﹣1,b=2
B.a=﹣1,b=1
C.a=1,b=1
D.a=1,b=2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106](即96≤净重≤106),样本数据分组为[96,98)(即96≤净重<98)以下类似,[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 ( ).
A.90
B.75
C. 60
D.45
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com