【题目】如图,在中,已知,,将绕着点A逆时针旋转,记点C的对应点为点D,AD、BC的延长线相交于点E.如果线段DE的长为,那么边AB的长为___.
【答案】
【解析】
作CH⊥AE于H,设AB=AC=a,根据等腰三角形的性质和三角形内角和定理可计算出再根据旋转的性质得AD=AB= a,∠CAD=∠BAC=30°,则利用三角形外角性质可计算出∠E=45°,接着在Rt△ACH中利用含30度的直角三角形三边的关系得所以然后在Rt△CEH中利用∠E=45°得到EH=CH,于是可得解方程即可.
作CH⊥AE于H,如图,
设AB=AC=a,
∴
∵将△ABC绕点A逆时针旋转,使点B落在点C处,此时点C落在点D处,
∴AD=AB= a,
∵∠ACB=∠CAD+∠E,
∴
在Rt△ACH中,∵
∴ ∴
在Rt△CEH中,∵
∴EH=CH,
解得:
故答案为:
科目:初中数学 来源: 题型:
【题目】一个边长为 4cm 的等边三角形 ABC 与⊙O 等高, 如图放置,⊙O 与 BC 相切于点 C,⊙O 与 AC 相交于点E,则 CE 的长为 _____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.
(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°.
①若AB=CD=1,AB∥CD,求对角线BD的长.
②若AC⊥BD,求证:AD=CD;
(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).
(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;
(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.
(1)求小张骑自行车的速度;
(2)求小张停留后再出发时y与x之间的函数表达式;
(3)求小张与小李相遇时x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校园手机”现象越来越受到社会的关注.为了了解学生和家长对中学生带手机的态度,某记者随机调查了城区若干名学生和家长的看法,调查结果分为:赞成、无所谓、反对,并将调查结果绘制成如下不完整的统计表和统计图:
根据以上图表信息,解答下列问题:
(1)统计表中的A________;
(2)统计图中表示家长“赞成”的圆心角的度数为________度;
(3)从这次接受调查的学生中,随机抽查一个,恰好是持“反对”态度的学生的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.
(1)求点D的坐标.
(2)求点M的坐标(用含a的代数式表示).
(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com