精英家教网 > 初中数学 > 题目详情

【题目】ADBEABC的角平分线,DE分别在BCAC上,若AD=ABBE=BC,则∠C=(  )

A. 69° B. C. D. 不能确定

【答案】C

【解析】分析:根据AD=AB和三角形内角和、外角性质,寻找∠C和∠BAC的关系的表达式;再根据BE=BC,寻找∠C和∠BAC关系的另一种表达式,由此可得关于∠BAC的方程,求得的度数,代入即可求得∠C.

详解:

AD=AB,

∴∠ADB=(180°﹣BAC)=90°﹣BAC,

∴∠C=ADB﹣DAC=(180°﹣BAC)=90°﹣BAC﹣BAC=90°﹣BAC;

BE=BC,

∴∠C=BEC=BAC+∠ABE=BAC+(180°﹣BAC)=BAC+45°﹣BAC=45°+BAC,

90°﹣BAC=45°+BAC,

解得∠BAC=

∴∠C=90°﹣

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】填空,如图所示.

1)∵ (已知),∴__________________ ______

2)∵ (已知),∴________________________

3)∵_________(已知),∴______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个长为8分米宽为5分米高为7分米的长方体上截去一个长为6分米宽为5分米深为2分米的长方体后得到一个如图所示的几何体一只蚂蚁要从该几何体的顶点A处沿着几何体的表面到几何体上和A相对的顶点B处吃食物那么它需要爬行的最短路径的长是 分米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电脑公司经销甲种型号电脑,每台售价4000元.为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15.

(1)有几种进货方案?

(2)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少? 若考虑投入成本最低,则应选择哪种进货方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:四边形ABDC,CD=BD,EAB上一点,连接DE,且∠CDE=B.若∠CAD=BAD=30°,AC=5,AB=3,EB=______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE

求证:1∠CEB=∠CBE

2)四边形BCED是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时间,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:

(1)图中自变量是______,因变量是______;

(2)小明家到学校的路程是 米;

(3)小明在书店停留了 分钟;

(4)本次上学途中,小明一共行驶了 米,一共用了 分钟;

(5)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠A60°BDCD分别平分∠ABC、∠ACBMNQ分别在射线DBDCBC上,BECE分别平分∠MBC、∠BCNBFCF分别平分∠EBC、∠ECQ,则∠F=(  )

A. 30°B. 35°C. 15°D. 25°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上两点(点在点的右侧),若数轴上存在一点,使得,则称点为点倍分点,若使得,则称点为点倍分点,若使得,则称点为点倍分点(为正整数).请根据上述规定回答下列问题:

1)如图,若点表示数,点表示数

①当点表示数时,则_______

②当点为点倍分点时,求点表示的数;

2)若点表示数,当点倍分点时,请直接写出点表示的数.(用含的代数式表示)

查看答案和解析>>

同步练习册答案