【题目】如图,两个等腰直角三角形△ABC和△CDE中,∠ACB=∠DCE=90°,AB=13,CD=5,△CDE绕点C在平面内自由旋转,当A、E、D三点共线时,AD的长是______.
【答案】7或17
【解析】
分两种情况:①当射线AD在直线AC的上方时,作CH⊥AD于点H,根据等腰直角三角形的性质和勾股定理,可得CH、AH的长,②当射线AD在直线AC的下方时,作CH⊥AD于点H,同理可得CH、AH的长,进而即可求解.
①当射线AD在直线AC的上方时,作CH⊥AD于点H,
∵CE=CD,∠ECD=90°,CH⊥DE,CD=5,
∴DE=5×=10,
∴EH=DH=CH=DE=5,
∵CA=CB,∠ACB=90°,AB=13,
∴AC=13÷=13,
∴在Rt△ACH中,AH=,
∴AD=AH+DH=12+5=17;
②当射线AD在直线AC的下方时,作CH⊥AD于点H,
同理可得:CH=5,AH=12,
∴AD=AHDH=125=7.
综上所述, AD的值为17或7.
故答案是:7或17.
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.
(1)求证:△ABD∽△CBA;
(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,已知点A(0,a),B(0,b)在y轴上,点 C(m,b)是第四象限内一点,且满足,△ABC的面积是56;AC交x轴于点D,E是y轴负半轴上的一个动点.
(1)求C点坐标;
(2)如图2,连接DE,若DEAC于D点,EF为∠AED的平分线,交x轴于H点,且∠DFE=90°,求证:FD平分∠ADO;
(3)如图3,E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分 ∠AEC,且PM⊥EM于M点,PN⊥x轴于N点,PQ平分∠APN,交x轴于Q点,则E在运动过程中,的大小是否发生变化,若不变,求出其值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,直线y=x+b与x轴交于点A(2,0),P为y轴上B点下方一点,以AP为腰作等腰直角三角形APM,点M落在第四象限,若PB=m(m>0),用含m的代数式表示点M的坐标是( )
A.(m-2,m+4)B.(m+2,m+4)C.(m+2,-m-4)D.(m-2,-m-4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=(x-m)2-(x-m),其中m是常数.
(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;
(2)若该抛物线的对称轴为直线x=.
①求该抛物线的函数解析式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,得到△A1B2C2,在网格中画出旋转后的△A1B2C2.
(3)连结,请判断的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com