【题目】如图,的半径,AB是弦,直线EF经过点B,于点C,.
求证:EF是的切线;
若,求AB的长;
在的条件下,求图中阴影部分的面积.
【答案】(1)证明见解析(2)2(3)
【解析】分析:1)由OA=OB得到∠OAB=∠OBA,加上∠BAC=∠OAB,则∠BAC=∠OBA,于是可判断OB∥AC,由于AC⊥EF,所以OB⊥EF,则可根据切线的判定定理得到EF是⊙O的切线;
(2)过点O作OD⊥AB于点D,根据垂径定理得AD=AB,再证明Rt△AOD∽Rt△ABC,利用相似比可计算出AB=2;
(3)由AB=OB=OC=2可判断△OAB为等边三角形,则∠AOB=60°,则∠ABC=30°,则可计算出BC=AC=,然后根据三角形面积公式和扇形面积公式,利用S阴影部分=S四边形AOBC-S扇形OAB=S△AOB+S△ABC-S扇形OAB进行计算即可.
详解:证明:,
,
,
,
,
,
,
是的切线;
过点O作于点D,则,
,
∽,
,即,
;
,
为等边三角形,
,
,
,
,
∴
=
=
科目:初中数学 来源: 题型:
【题目】如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).
参考数据sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.732.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中, AD// BC, ∠B=90°, AD=2, BC=5,E是AB上一点,将△BCE沿着直线CE翻折,点B恰好与点D重合,则BE=__
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在∠O的一边OA上.按要求画图并填空:
(1)过点A画直线AB ⊥OA,与∠O的另一边相交于点B;
(2)过点A画OB的垂线段AC,垂足为点C;
(3)过点C画直线CD∥OA ,交直线AB于点D;
(4)∠CDB= °;
(5)如果OA=8,AB=6,OB=10,则点A到直线OB的距离为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.点在轴负半轴上,,,,是射线上的点,连接,以为边作等边,点在直线的上方,则下列结论正确的是( )
A. 随的增大而减小B. 随的增大而增大
C. 随的增大而减小D. 随的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)作出△ABC绕点A逆时针旋转90°的△A1B1C1;作出△ABC关于原点O成中心对称的△A2B2C2;
(2)点B1的坐标为__________,点C2的坐标为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com