精英家教网 > 初中数学 > 题目详情

【题目】8分)如图,已知BC⊙O的直径,AC⊙O于点CAB⊙O于点DEAC的中点,连结DE

1)若AD=DBOC=5,求切线AC的长.

2)求证:ED⊙O的切线.

【答案】1AC=10;(2)详见解析.

【解析】

试题(1)连接CD,根据直径所对的圆周角是直角可得∠BDC=90°,CD⊥AB.又因EAC的中点,根据线段垂直平分线的性质即可得AC="BC=2OC" =10.(2)连接OD,根据直角三角形斜边的中线等于斜边的一半可得DE=EC=AC,再由等边对等角可得∠1=∠2, ∠3=∠4,根据切线的性质定理可得AC⊥OC,所以∠1+∠3=∠2+∠4,即可证得DE⊥OD,所以DE⊙O的切线.

试题解析:

1)连接CD,

∵BC⊙O的直径,

∴∠BDC=90°,CD⊥AB,

∵AD=DB

∴AC=BC=2OC=10

2)连接OD,

∵∠ADC=90°,EAC的中点,

∴DE=EC=AC, ∴∠1=∠2,

∵OD="OC," ∠3=∠4,

∵AC⊙O于点C∴AC⊥OC

∴∠1+∠3=∠2+∠4,DE⊥OD,

∴DE⊙O的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】9分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74cos48°≈0.67tan48°≈1.11≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于某一个函数,自变量x在规定的范围内,若任意取两个值x1和x2,它们的对应函数值分别为y1和y2. 若x2>x1时,有y2>y1,则称该函数单调递增;若x2>x1时,有y2<y1,则称该函数单调递减.例如二次函数y=x2,在x≥0时,该函数单调递增;在x≤0时,该函数单调递减.

(1)二次函数:y=(x+1)2+2自变量x在哪个范围内,该函数单调递减?

(2)证明:函数:y=x﹣在x>1的函数范围内,该函数单调递增.

(3)若存在两个关于x的一次函数,分别记为:g=k1x+b1和h=k2x+b2,且函数g在实数范围内单调递增,函数h在实数范围内单调递减.记第三个一次函数y=g+h,则比例系数k1和k2满足何种条件时,函数y在实数范围内单调递增?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:噢,我知道路灯有多高了!同学们,请你和小明一起解答这个问题:

(1)在图中作出路灯O的位置,并作OP⊥lP.

(2)求出路灯O的高度,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D、E,过劣弧DE(不包括端点D,E)上任一点P⊙O的切线MNAB,BC分别交于点M,N,若⊙O的半径为4cm,则Rt△MBN的周长为________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y上运动,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数k为常数,k≠1).

)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;

)若在其图象的每一支上,yx的增大而减小,求k的取值范围;

)若其图象的一支位于第二象限,在这一支上任取两点Ax1y1Bx2y2,当y1y2时,试比较x1x2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,点P的坐标为(m,n),则向量可以用点P的坐标表示为=(m,n);已知=(x1,y1),=(x2,y2),若x1x2+y1y2=0,则互相垂直.

下面四组向量:①=(3,﹣9),=(1,﹣);

=(2,π0),=(21,﹣1);

=(cos30°,tan45°),=(sin30°,tan45°);

=(+2,),=(﹣2,).

其中互相垂直的组有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)

查看答案和解析>>

同步练习册答案