分析 (1)EG=FH;
(2)因为平行四边形的邻角互补,则邻角的平分线组成的角为90°,有三个角是90°的四边形是矩形,故EG=FH.
解答 (1)解:EG=FH.
故答案为EG=FH.
(2)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BAD+∠ABC=180°.
又∵AF,BH分别平分∠BAD,∠ABC,
∴∠BAE=$\frac{1}{2}$∠BAD,∠ABE=$\frac{1}{2}$∠ABC,
∴∠BAE+∠ABE=90°,
∴∠AEB=90°,
∴∠FEH=90°.
同理可证∠EFG=90°,∠EHG=90°,
∴四边形EFGH为矩形,
∴EG=FH.
点评 本题考查了矩形的判定,平行四边形的性质,角平分线的定义,平行线的性质,难度适中.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com