精英家教网 > 初中数学 > 题目详情

【题目】某蓝莓种植生产基地产销两旺采摘的蓝莓部分加工销售部分直接销售且当天都能销售完直接销售是40/加工销售是130/(不计损耗).已知基地雇佣20名工人每名工人只能参与采摘和加工中的一项工作每人每天可以采摘70斤或加工35设安排x名工人采摘蓝莓剩下的工人加工蓝莓

(1)若基地一天的总销售收入为yyx的函数关系式;

(2)试求如何分配工人才能使一天的销售收入最大?并求出最大值

【答案】(1)y=-350x+63 000.(2)安排7名工人进行采摘,13名工人进行加工才能使一天的收入最大最大收入为60 550元.

【解析】试题(1)根据题意可知x人参加采摘蓝莓,则(20-x)人参加加工,可分别求出直接销售和加工销售的量,然后乘以单价得到收入钱数,列出函数的解析式;

2)根据采摘量和加工量可求出x的取值范围,然后根据一次函数的增减性可得到分配方案,并且求出其最值.

试题解析:(1)根据题意得:.

(2)因为,解得,又因为为正整数,且.

所以,且为正整数.

因为,所以的值随着的值增大而减小,

所以当时,取最大值,最大值为.

答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】【发现证明】
如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.
小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.

(1)【类比引申】如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;

(2)【联想拓展】如图4,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一般情况下,不成立,但有些数可以使得它成立,例如:a1b2.我们称使得成立的一对数ab相伴数对,记为(ab).

1)判断数对(﹣21),(33)是否是相伴数对

2)若(k,﹣1)是相伴数对,求k的值;

3)若(4m)是相伴数对,求代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC与△ABC′在平面直角坐标系中的位置如图.

1)分别写出下列各点的坐标: A   B   C   

2)若点Pab)是△ABC内部一点,则平移后△ABC′内的对应点P′的坐标为   

3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长是2DE分别为ABAC的中点,延长BC至点F,使CF=BC,连接CDEF

1)求证:DE=CF

2)求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一期间,小明和小颖相约到乐山大佛景区参观.小明乘私家车从成都出发1小时后,小颖乘坐高铁从成都出发,先到乐山高铁站,然后转乘出租车到乐山大佛景区(换车时间忽略不计),两人恰好同时到达景区.他们离开成都的距离y(千米)与时间t(小时)的关系如图所示,请结合图象解决下面问题.

1)高铁的平均速度是每小时多少千米?

2)当小颖到达乐山高铁站时,小明距离乐山大佛景区还有多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形网格中,△ABC的三个顶点ABC都在格点上.

1)在图中画出与△ABC关于直线l成轴对称的△A1B1C1

2)在直线l上找出一点P,使得|PAPC|的值最大;(保留作图痕迹并标上字母P

3)在直线l上找出一点Q,使得QA+QC1的值最小;(保留作图痕迹并标上字母Q

4)在正方形网格中存在   个格点,使得该格点与BC两点构成以BC为底边的等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论: ①b<1;②c<2;③0<m< ;④n≤1.
则所有正确结论的序号是

查看答案和解析>>

同步练习册答案