精英家教网 > 初中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形,E是BC的中点.
(1)求证:AE∥平面PCD;
(2)记平面PAB与平面PCD的交线为l,求二面角C﹣l﹣B的余弦值.

【答案】
(1)证明:∵∠ABC=∠BAD=90°,BC=2AD,E是BC的中点,

∴AD∥CE,且AD=CE,

∴四边形ADCE是平行四边形,∴AE∥CD,

∵AE平面PCD,CD平面PCD,

∴AE∥平面PCD


(2)解:连结DE、BD,设AE∩BD于O,连结PO,

则四边形ABED是正方形,∴AE⊥BD,

∵PD=PB=2,O是BD中点,∴PO⊥BD,

则PO= = =

又OA= ,PA=2,∴PO2+OA2=PA2

∴△POA是直角三角形,∴PO⊥AO,

∵BD∩AE=O,∴PO⊥平面ABCD,

以O为原点,OE为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,

则P(0,0, ),A(﹣ ),B(0, ,0),E( ),D(0,﹣ ,0),

=(﹣ ), =(0, ), =(0, ), =(2 ,0,0),

=(x,y,z)是平面PAB的法向量,

,取x=1,得

=(a,b,c)是平面PCD的法向量,

,取b=1,得 =(0,1,﹣1),

cos< >= =0,

∴二面角C﹣l﹣B的余弦值为0.


【解析】(1)推导出四边形ADCE是平行四边形,从而AE∥CD,由此能证明AE∥平面PCD.(2)连结DE、BD,设AE∩BD于O,连结PO,推导出AE⊥BD,PO⊥BD,PO⊥AO,从而PO⊥平面ABCD,以O为原点,OE为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出二面角C﹣l﹣B的余弦值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】给出下列四个命题: ①回归直线 恒过样本中心点
②“x=6”是“x2﹣5x﹣6=0”的必要不充分条件;
③“x0∈R,使得x02+2x0+3<0”的否定是“对x∈R,均有x2+2x+3>0”;
④“命题p∨q”为真命题,则“命题p∧q”也是真命题.
其中真命题的个数是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,BD=2AD=8,AB=4
(Ⅰ)证明:平面PBD⊥平面PAD;
(Ⅱ)求二面角B﹣PA﹣D的余弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知f(x)=(x2﹣2ax)lnx+2ax﹣ x2 , 其中a∈R.
(1)若a=0,且曲线f(x)在x=t处的切线l过原点,求直线l的方程;
(2)求f(x)的极值;
(3)若函数f(x)有两个极值点x1 , x2(x1<x2),证明f(x1)+f(x2)< a2+3a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE为折痕,使AB的一部分与BC重合,ABC延长线上的点D重合,则CE的长度为( )

A. 1 B. C. 2 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设函数f(x)=|x+ |+|x﹣2m|(m>0). (Ⅰ)求证:f(x)≥8恒成立;
(Ⅱ)求使得不等式f(1)>10成立的实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,B,C,D为平面四边形ABCD的四个内角,若A+C=180°,AB=6,BC=4,CD=5,AD=5,则四边形ABCD面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为: ,以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求曲线C的极坐标方程;
(Ⅱ)已知直线l1 ,射线 与曲线C的交点为P,l2与直线l1的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某水库养殖鱼的有关情况,从该水库多个不同位置捕捞出200条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,绘制了直方图
(1)根据直方图提供的信息,这组数据的中位数落在范围内;
(2)估计数据落在1.00~1.15中的频率是
(3)将上面捕捞的200条鱼分别作一记号后再放回水库.几天后再从水库的多处不同的位置捕捞150条鱼,其中带有记号的鱼有10条,请根据这一情况估算该水库中鱼的总条数.

查看答案和解析>>

同步练习册答案