精英家教网 > 初中数学 > 题目详情

【题目】ACB三地依次在一条笔直的道路上甲、乙两车同时分别从AB两地出发,相向而行.甲车从A地行驶到B地就停止,乙车从B地行驶到A地后,立即以相同的速度返回B地,在整个行驶的过程中,甲、乙两车均保持匀速行驶,甲、乙两车距C地的距离之和ykm)与甲车出发的间(b)之间的函数关系如图所示,则甲车到达B地时,乙车距B地的距离为_____km

【答案】150

【解析】

先根据函数图象提供的信息,求得乙车的速度和甲车的速度,还可以求ABAC的长,根据甲到达B地的时间,计算乙车距B地的距离.

由题意得:A地到C地甲走了2个小时,乙走了个小时,

设甲的速度为,则乙的速度为,根据题意得:

解得:

故甲的速度为60km/h,则乙的速度为90km/h

AC两地的距离为:2×60120km

AB两地的距离为:300

甲到达B地的时间为:

甲车到达B地时,乙车距B地的距离为:

故答案为:150

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①所示,已知正方形ABCD和正方形AEFG,连接DGBE

1)发现:当正方形AEFG绕点A旋转,如图②所示.

①线段DGBE之间的数量关系是   

②直线DG与直线BE之间的位置关系是   

2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD2ABAG2AE时,上述结论是否成立,并说明理由.

3)应用:在(2)的情况下,连接BGDE,若AE1AB2,求BG2+DE2的值(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点A在第一象限,轴于B点,连结,将折叠,使点落在x轴上,折痕交边于D点,交斜边E点,(1)若A点的坐标为,当时,点的坐标是______;(2)若与原点O重合,,双曲线的图象恰好经过DE两点(如图2),则____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:

问题情境:在矩形ABCD中,点EBC边的中点,将△ABE沿直线AE翻折,使点B与点F重合,直线AF交直线CD于点G

特例探究

实验小组的同学发现:

1)如图1,当ABBC时,AGBC+CG,请你证明该小组发现的结论;

2)当ABBC4时,求CG的长;

延伸拓展

3)实知小组的同学在实验小组的启发下,进一步探究了当ABBC时,线段AGBCCG之间的数量关系,请你直接写出实知小组的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高考英语听力测试期间,需要杜绝考点周围的噪音。如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125点处有一消防队。在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火。已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶。试问:消防车是否需要改道行驶?说明理由.1.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在初中阶段的函数学习中我们经历了确定函数的表达,利用函数图象研究其性质﹣﹣运用函数解决问题的学习过程,在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.已知函数y2b的定义域为x≥3,且当x0y22由此,请根据学习函数的经验,对函数y2b的图象与性质进行如下探究:

1)函数的解析式为:   

2)在给定的平面直角坐标系xOy中,画出该函数的图象并写出该函数的一条性质:   

3)结合你所画的函数图象与yx+1的图象,直接写出不等式2b≤x+1的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司试销一种成本单价为50/件的新产品,规定试销时销售单价不低于成本单价,又不高于80/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数ykx+b的关系(如图所示)

I)根据图象,求一次函数ykx+b的解析式,并写出自变量x的取值范围;

(Ⅱ)该公司要想每天获得最大的利润,应把销售单价定为多少?最大利润值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校初三学生上周末使用手机的情况(选项:A.聊天;B.学习;C.购物;D.游戏;E.其他),随机抽查了该校初三若干名学生,对其上周末使用手机的情况进行统计(每个学生只选一个选项),绘制了统计表和条形统计图.

选项

人数

频率

A

15

0.3

B

10

m

C

5

0.1

D

n

E

5

0.1

根据以上信息回答下列问题:

(1)这次调查的样本容量是

(2)统计表中m n ,补全条形统计图;

(3)若该校初三有540名学生,请估计该校初三学生上周末利用手机学习的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以ABC的边ACBC为腰向外作等腰直角DAC和等腰直角EBC,连接DE.

1)求证:DACEBC

2)求ABCDEC的面积比.

查看答案和解析>>

同步练习册答案