【题目】某公司试销一种成本单价为50元/件的新产品,规定试销时销售单价不低于成本单价,又不高于80元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图所示)
(I)根据图象,求一次函数y=kx+b的解析式,并写出自变量x的取值范围;
(Ⅱ)该公司要想每天获得最大的利润,应把销售单价定为多少?最大利润值为多少?
【答案】(1)y=﹣x+100(50≤x≤80);(2)销售单价定为75元/件,最大利润为625元.
【解析】
(1)根据题意,利用待定系数法求一次函数的解析式即可;(2)设每天获得的利润为W元,构建利润W与销售单价x的二次函数模型,根据二次函数的性质即可求解.
解:(1)由函数的图象得:,
解得:,
∴所以y=﹣x+100(50≤x≤80);
(2)设每天获得的利润为W元,
由(1)得:W=(x﹣50)y=(x﹣50)(﹣x+100)=﹣x2+150x﹣5000=﹣(x﹣75)2+625,
∵﹣1<0,
∴当x=75时,W最大=625即该公司要想第天获得最大利润,应把销售单价为75元/件,最大利润为625元.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.
(1)求证:∠CAE=∠B;
(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场某种商品平均每天可销售30件,每件盈利50元。为了尽快减少库存,商场决定采取适当的降价措施。经调查发现,每件商品每降价1元,商场平均每天可多售出2件。设每件商品降价元。据此规律,请回答:
(1)商场日销售量增加_____件,每件商品盈利_____元(用含的代数式表示)。
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形中,是边上一点,
(1)将绕点按顺时针方向旋转。使、重合,得到,如图(a)所示.观察可知:与相等的线段是__________,__________.
(2)如图(b)所示,正方形中,、分别是、边上的点,且,试通过旋转的方式说明:.
(3)在(2)的条件下,连接分别交、于点、,如图(c)所示.判断、、之间的关系,直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,线段AB的两个端点坐标分别为(﹣2,1)和(2,3).
(1)在图中分别画出线段AB关于x轴的对称线段A1B1,并写出A1、B1的坐标.
(2)在x轴上找一点C,使AC+BC的值最小,在图中作出点C,并直接写出点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.
请你回答:
(1)在图①中,中线AD的取值范围是 .
(2)应用上述方法,解决下面问题
①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.
②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=48°,∠BAC的平分线与线段AB的垂直平分线OD交于点O.连接OB、OC,将∠ACB沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,∠BAD=120°,AC平分∠BAD,AC与BD相交于E点,下列结论错误的是( )
A. △BDC为等边三角形 B. ∠AED=∠ABC
C. △ABE∽△DBA D. BC2=CECA
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了保护环境,某开发区综合治理指挥部决定购买,两种型号的污水处理设备共10台.已知用90万元购买型号的污水处理设备的台数与用75万元购买型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
污水处理设备 | 型 | 型 |
价格(万元/台) | ||
月处理污水量(吨/台) | 220 | 180 |
(1)求的值;
(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com