【题目】商场某种商品平均每天可销售30件,每件盈利50元。为了尽快减少库存,商场决定采取适当的降价措施。经调查发现,每件商品每降价1元,商场平均每天可多售出2件。设每件商品降价元。据此规律,请回答:
(1)商场日销售量增加_____件,每件商品盈利_____元(用含的代数式表示)。
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
【答案】(1); .(2)每件商品降价20元时,商场日盈利可达到2100元.
【解析】试题分析:(1)由题意可知,降价1元,可多售出2件,降价x元,可多售出2x件,每件商品盈利的钱数=原来的盈利-降低的钱数即可得每件商品盈利的钱数;(2)根据等量关系“每件商品的盈利×可卖出商品的件数=2100”,把相关数值代入计算得到合适的解即可.
试题解析:(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=50-x,故答案为2x;(50-x);
由题意得:(50-x)(30+2x)=2100,
化简得:x2-35x+300=0,
解得:x1=15,x2=20.
∵该商场为了尽快减少库存,则x=15不合题意,舍去.
∴x=20.
答:每件商品降价20元,商场日盈利可达2100元.
科目:初中数学 来源: 题型:
【题目】如图,A是∠MON边OM上一点,AE∥ON.
(1)在图中作∠MON的角平分线OB(要求用尺规),交AE于点B;过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完整.
(2)判断四边形OABC的形状,并证明你的结论.
解:四边形OABC是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】圆柱底面周长为4cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以点A为顶点作等腰Rt△ABC,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE,延长BD交CE于点F.
(1)试判断BD、CE的关系,并说明理由;
(2)把两个等腰直角三角形按如图2所示放置,(1)中的结论是否仍成立?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.
求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?
(2)这批产品的销售款比原料费与运输费的和多多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.
求证:(1)△AFD≌△CEB;
(2)四边形ABCD是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在直线l外,点B在直线l上.
(1)在l上求作一点C,在l外求作一点D,使得以A、B、C、D为顶点的四边形是菱形;(要求:用直尺和圆规作出所有大小不同的菱形)
(2)连接AB,若AB=5,且点A到直线l的距离为4,通过计算,找出(1)中面积最小的菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)若BC=8,DE=6,求△AEF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com