精英家教网 > 初中数学 > 题目详情

【题目】如图,已知是直角,平分平分

,求的度数.

(2),求的度数.

【答案】145°;(245°

【解析】

1)先求出∠AOC的度数,再根据OE平分∠AOCOF平分∠BOC.得出∠COE=75°,∠COF=30°,则∠EOF=COE-COF
2)由(1)得∠EOF恒等于∠AOC的一半减去∠BOC的一半.

解:(1)∵∠AOB是直角,∠BOC=60°

∴∠AOC=AOB+BOC=150°

OE平分∠AOCOF平分∠BOC
∴∠COE=AOC=75°,∠COF=BOC=30°
∴∠EOF=COE-COF=45°;
2)由(1)得:
EOF=AOC-BOC=(∠AOC-BOC=AOB=45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+b(a≠0)的图形与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH= ,点B的坐标为(m,﹣2).

(1)求该反比例函数和一次函数的解析式.
(2)求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点满足.将线段先向上平移2个单位,再向右平移1个单位后得到线段,并连接

1)请求出点和点的坐标;

2)点点出发,以每秒1个单位的速度向上平移运动.设运动时间为秒,问:是否存在这样的,使得四边形的面积等于8?若存在,请求出的值:若不存在,请说明理由;

3)在(2)的条件下,点点出发的同时,点从点出发,以每秒2个单位的速度向左平移运动,设射线轴于点.设运动时间为秒,问:的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,分别是上的点,作,垂足分别是 下面三个结论:①其中正确的是(

A.B.②③C.①②D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,平面直角坐标系中,A111)、A2(﹣11)、A3(﹣1,﹣1)、A42,﹣1)、A522)、A6(﹣22)、A7(﹣2,﹣2)、A83,﹣2)、A933)、……、按此规律A2020的坐标为(  )

A.506,﹣505B.505,﹣504C.(﹣504,﹣504D.(﹣505,﹣505

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EFADADBCCE平分∠BCF,∠DAC=115°,∠ACF=25°,则∠FEC=_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.

(1)试确定函数关系式y=a(x﹣h)2+k;
(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;
(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图EFCD,∠1+∠2180°.

1)试说明GDCA

2)若CD平分∠ACBDG平分∠CDB,且∠A40°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.

(1)求证:四边形AFCE是平行四边形.

(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗 ”若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案