【题目】在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,使|PA﹣PB|取得最大值?若存在,求出点P的坐标;若不存在,请说明理由;
(3)已知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.
【答案】(1)y=(x﹣2)2;(2)P(2,﹣);(3)F(2,1).
【解析】
(1)设函数解析式为y=a(x﹣2)2,将点(4,1)代入,即可求解析式;
(2)联立方程求出对称轴x=2,点A关于对称轴的对称点为 当点P,A',B共线时,|PA﹣PB|取得最大值;待定系数法求出直线A'B的解析式即可求点P;
(3)由 点M到直线l的距离与点M到点F的距离总是相等,得到将代入,整理得到由m是任意的,所以有方程组,求解即可.
解:(1)设函数解析式为y=a(x﹣2)2,
将点(4,1)代入,
得到a=,
∴
(2)与的交点
对称轴x=2,
点A关于对称轴的对称点为
当点P,A',B共线时,|PA﹣PB|取得最大值;
设直线A'B的解析式为y=kx+b,
∴
∴
∴
∴
(3)∵点M到直线l的距离与点M到点F的距离总是相等,
∴
∴
∵,
∴
∴
∴
∴F(2,1);
科目:初中数学 来源: 题型:
【题目】在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:
(1)①作出△ABC向左平移4个单位长度后得到的△A1B1C1, 并写出点C1的坐标;
②作出△ABC关于原点O对称的△A2B2C2, 并写出点C2的坐标;
(2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在中,,.
(1)如图1,将线段绕点逆时针旋转得到,连结、,的平分线交于点,连结.
①求证:;②用等式表示线段、、之间的数量关系(直接写出结果);
(2)在图2中,若将线段绕点顺时针旋转得到,连结、,的平分线交的延长线于点,连结.请补全图形,并用等式表示线段、、之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.
(1)直接写出点E的坐标(用含t的代数式表示):_____;
(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另外有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).
(1)从口袋中摸出一个小球,所摸球上的数字大于2的概率为 ;
(2)小龙和小东想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于5,那么小龙去;否则小东去.你认为游戏公平吗?请用树状图或列表法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有 人,在扇形统计图中,“乒乓球”的百分比为 %,如果学校有800名学生,估计全校学生中有 人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.
(1)求证:BE=CD;
(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC=5,BC=8,点M是△ABC的中线AD上一点,以M为圆心作⊙M.设半径为r
(1)如图1,当点M与点A重合时,分别过点B,C作⊙M的切线,切点为E,F.求证:BE=CF;
(2)如图2,若点M与点D重合,且半圆M恰好落在△ABC的内部,求r的取值范围;
(3)当M为△ABC的内心时,求AM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.
(1)求二次函数的表达式;
(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;
(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com