【题目】在△ABC中,AB=AC=5,BC=8,点M是△ABC的中线AD上一点,以M为圆心作⊙M.设半径为r
(1)如图1,当点M与点A重合时,分别过点B,C作⊙M的切线,切点为E,F.求证:BE=CF;
(2)如图2,若点M与点D重合,且半圆M恰好落在△ABC的内部,求r的取值范围;
(3)当M为△ABC的内心时,求AM的长.
【答案】(1)见解析;(2);(3)AM=.
【解析】
(1)连接AE,AF,利用“HL”证Rt△BAE≌Rt△ACF即可得;
(2)作DG⊥AB,由AB=AC=5,AD是中线知AD⊥BC且AD==3,依据BD×AD=AB×DG可得DG=,从而得出答案;
(3)作MH⊥AB,MP⊥AC,有MH=MP=MD,连接BM、CM,根据ABMH+BCMD+ACMP=ADBC求出圆M的半径,从而得出答案.
解:(1)如图1,连接AE,AF,
∵BE和CF分别是⊙O的切线,
∴∠BEA=∠CFA=90°,
∵AB=AC,AE=AF,
∴Rt△BAE≌Rt△ACF(HL),
∴BE=CF;
(2)如图2,过点D作DG⊥AB于点G,
∵AB=AC=5,AD是中线,
∴AD⊥BC,
∴AD==3,
∴BD×AD=AB×DG,
∴DG=,
∴当0<r<时,半圆M恰好落在△ABC内部;
(3)当M为△ABC的内心时,
如图3,过M作MH⊥AB于H,作MP⊥AC于P,
则有MH=MP=MD,
连接BM、CM,
∴ABMH+BCMD+ACMP=ADBC,
∴r=,
∴AM=AD﹣DM=.
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,OA=3,OC=2,点F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= 的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积最大,最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,使|PA﹣PB|取得最大值?若存在,求出点P的坐标;若不存在,请说明理由;
(3)已知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点在轴正半轴上,轴,点、的横坐标都是3,且,点在上,若反比例函数的图象经过点、,且.
(1)求的值及点的坐标;
(2)将沿着折叠,设顶点的对称点的坐标是,求代数式的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一居民楼AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为38°.从距离楼底B点2米的P处经过树顶E点恰好看到塔的顶部C点,且仰角β为28°.已知树高EF=8米,求塔CD的高度.(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段,使BA=BC,连接AC.
(1)如图1,求C点坐标;
(2)如图2,若P点从A点出发,沿x轴向左平移,连接BP,作等腰直角三角形△BPQ,连接CQ.求证:PA=CQ.
(3)在(2)的条件下,若C、P、Q三点共线,求此时P点坐标及∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD,BC分别与x轴交于E,F,连接BE,DF,若正方形ABCD的顶点B,D在双曲线y=上,实数a满足a1﹣a=1,则四边形DEBF的面积是( )
A. B. C. 1D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在二次函数y=ax2+bx+c(a≠0)的图象中,小明同学观察得出了下面几条信息:①b2﹣4ac>0;②abc<0;③;④b2=4a(c﹣1);⑤关于x的一元二次方程ax2+bx+c=3无实数根,共中信息错误的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AB=5,过点B作BD⊥AB,点C,D都在AB上方,AD交△BCD的外接圆⊙O于点E.
(1)求证:∠CAB=∠AEC.
(2)若BC=3.
①EC∥BD,求AE的长.
②若△BDC为直角三角形,求所有满足条件的BD的长.
(3)若BC=EC= ,则= .(直接写出结果即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com